
A First Look at RStudio
Modern Plain Text Computing

Week 01

Kieran Healy

August 2025

kieran.healy@duke.edu

mailto:kieran.healy@duke.edu

Getting to know R and RStudio

We want to do our
work reproducibly

The RStudio IDE

An Integrated Development Environment

An IDE for Meals

RStudio at startup with an empty sample project

RStudio schematic overview

RStudio schematic overview

RStudio at startup

RStudio at startup

RStudio at startup

RStudio at startup

RStudio at startup

Your code is what’s real in your project
Tools > Global Options > General

Uncheck “Restore .RData into
workspace at startup”

Consider not showing output inline
Tools > Global Options > RMarkdown

Uncheck “Show output inline for all R
Markdown documents”

Things an IDE brings together
A text editor for writing code and documents

A console or REPL (Read-Eval-Print Loop) for running code interactively

A terminal to talk to the operating system

A debugger to help find problems in your code

A file manager to navigate your project

A version control interface to manage changes to your code

A viewer for plots, tables, and other outputs

An inspector to see what’s in your environment

RStudio is just one IDE
Positron (a newer IDE for R and Python)

VS Code (a general-purpose IDE that supports many languages)

JupyterLab (an IDE for Python notebooks)

Text editors like Vim, Emacs, and Sublime Text can be configured to work like
IDEs, too.

An IDE is not required
You can write R code in any text editor and run it from the command line.

You can do the other things an IDE does with separate tools, via the command
line or other applications.

However, IDEs make your life easier.

They also don’t impose much structure on your projects. If you want to switch
to another, or to no IDE at all, you can do so without much trouble.

Fundamentally …
A core set of interdependent tasks that require doing things with the
computer.

A modular set of tools that do specific things, built around a text editor, a
console, and plain-text configuration or code files.

Some method of organizing and orchestrating these tools.

Writing documents

Use Quarto to
produce and

reproduce your
work

Where we want to end up

Where we want to end up

PDF out

Where we want to end up

HTML out

Where we want to end up

Word out

How to get there?
We could write an R script with some notes inside,

using it to create some figures and tables, paste them
into our paper, which we write separately.

This will work fine. In fact, the more complex our
projects get, the more likely it is we will write more

standalone code like this. It will also look less and less
like a single all-in-one-breath script and more like a

structured collection R files that combine to do many
things.

But to begin—and in fact for quite a long time after—
we can also do things a little differently, by taking a
more notebook-based approach. For many use-cases

this will be better.

We can make this …

… by writing this

The code gets replaced by its output
This way of doing things is called a Literate Programming or Notebook approach.

Quarto document

Quarto document annotated

This approach has its limitations, but it’s very useful and has many benefits.

Strengths and weaknesses
Notebooks work
smoothly when

Your document or report is small and
self-contained.

Your analysis is quick or lightweight.

You are making slides.

You are making a lot of similar
reports from a template.

You regularly refer to calculated
items in the text of your analysis.

Sidenote: In Practice
Even when things get complicated, notebook-style documents like Quarto files
are great as component parts of larger projects. The more complex your project,
the less likely it will straightforwardly fit into a single notebook. The same is
true of script-based approaches. The more complex a project, the more you will
break it up into smaller, more tractable pieces. You will re-factor it, as
programmers say, and make it more modular.

You may find yourself, for example, splitting parts of a complex document up
into different pieces. The pieces will contain code that cleans and pre-processes
data, runs analyses, and produces some outputs. You can then incorporate those
into a Quarto document indirectly. Not by copying and pasting them, but by
pointing to those outputs and making use of them to make your tables and
figures, and so on.

Basic markdown summary
Desired style Use the following Markdown annotation

Heading 1 # Heading 1

Heading 2 ## Heading 2

Heading 3 ### Heading 3 (Actual heading styles will vary.)

Paragraph Just start typing

Bold **Bold**

Italic *Italic*

Images [Alternate text for image](path/image.jpg)

[Link text](https://www.visualizingsociety.com/)

Unordered Lists

- First - First

- Second. - Second

- Third - Third

Ordered Lists

1. First 1. First

2. Second. 2. Second

3. Third 3. Third

Footnote.¹ Footnote[^notelabel]

¹The note’s content. [^notelabel] The note's content.

Hyperlinks

https://www.visualizingsociety.com/

The right frame of mind
This is like learning how to drive a car, or how to cook in a kitchen … or
learning to speak a language.

After some orientation to what’s where, you will learn best by doing.

Software is a pain, but you won’t crash the car or burn your house down.

Create a new Quarto Project
File > New Project > New Directory > Quarto Project

Choose a location for a folder named mptc

Initialize a git repository

Check the “Open in new session” box

Click “Create Project”

Create a new Quarto Document
Once the project opens, create a new file (File > New File > Quarto Document)

Choose “Document” and “HTML” as the output format

Save the file as scratch.qmd in the mptc folder

For now
Get used to editing text files in RStudio and rendering them to HTML or PDF.

Don’t worry about writing any code at this point. Treat it as a way to take
notes for the class.

In the same way that you should be reading around and beyond the assigned
readings for other classes, you should also be exploring R and RStudio on your
own. Try to do things; see what happens.

