
The File System & the
Shell

Modern Plain Text Computing
Week 03b

Kieran Healy

September 2025

kieran.healy@duke.edu

mailto:kieran.healy@duke.edu

Files

Files
A file is just a stream of bytes, or data, some sort of resource that a program
can read or interact with.

Files have a location in the file system.

In the UNIX way of thinking, “Everything is a file”

That is, lots of things that are not normally thought of as files (such as
printers, or terminal screens, or connections to other computers) can be
thought of as living in a named place somewhere in the filesystem.

The basic set of UNIX utilities can be thought of as tools that accept “files” (as
a standard stream of input data), perform some specific action on them (read,
print, move, copy, delete, count lines, find text, whatever) and then return a
standard stream of output data that can be sent somewhere, e.g. to a terminal
display, or used as input to another command, or become a file of its own.

File system hierarchy

Illustration: Shelley Powers et al. Unix Power Tools, 3rd ed. (Sebastopol, CA: O’Reilly Media, 2002), 23.

Path conventions
/ represents a division in the file hierarchy. You can think of it as a branch
point on a tree, or as a new level of nesting in a series of boxes, or as the
action “Go inside” or “Enter”.

On a Unix-like system, a full path to a file looks like this:

“Go inside the ‘Users’ folder, then inside the ‘kjhealy’ folder, then inside
‘Documents’ then inside ‘courses’ then ‘mptc’ then ‘slides’ and you will find
the file 01b-slides.qmd.”

/Users/kjhealy/Documents/courses/mptc/slides/01b-slides.qmd

Standard Unix locations
/ : root. Everything lives inside or under the root.

/bin/ : For binaries. Core user executable programs and tools.

/sbin/ : System binaries. Essential executables for the super user (who is
also called root)

/lib/ : Support files for executables.

/usr/ : Conventionally, stuff installed “locally” for users in addition to the
core system. Will contain its own bin/ and lib/ subdirs.

/usr/local : Files that the local user has compiled or installed

/opt/ : Like /usr/, another place for locally installed software to go.

Standard Unix locations
These locations get mapped together in the $PATH, which is an environment
variable that tells the system where executables can be found.

Delimited by : and searched in order from left to right.

To learn where a command is being executed from, use which

❯ echo $PATH
/home/kjhealy/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/snap/bin

❯ which R
/usr/local/bin/R

Standard Unix locations
/ : root. Everything lives inside or under the root.

/bin/ : For binaries. Core user executable programs and tools.

/sbin/ : System binaries. Essential executables for the super user (who is
also called root)

/lib/ : Support files for executables.

/usr/ : Conventionally, stuff installed “locally” for users in addition to the
core system. Will contain its own bin/ and lib/ subdirs.

/usr/local : Files that the local user has compiled or installed

/opt/ : Like /usr/, another place for locally installed software to go.

/etc/ : Editable text configuration. Config files often go here.

Standard Unix locations
/home/ or /Users/ : Where the accounts of individual system users live, like
/Users/kjhealy or /home/kjhealy

All of this is a matter of more or less established convention that varies by
particular operating systems. E.g. on most Linux systems, individual user
directories live in /home. On macOS they live in /Users. Windows is different
again (and uses \ for file paths rather than /.)

❯ pwd
/home/kjhealy
❯ ls
bin certbot.log logrotate.conf old projects public staging

File system hierarchy
An edited version of the root, /, or top of my Mac’s file system tree:

├── Applications
├── bin
├── cores
├── dev
├── etc -> private/etc
├── home -> /System/Volumes/Data/home
├── Library
├── opt
│ ├── homebrew
├── private
│ ├── etc
│ ├── tftpboot
│ ├── tmp
│ └── var
├── sbin
├── System
├── tmp -> private/tmp
├── Users
│ ├── kjhealy
│ └── Shared
├── usr
│ ├── bin
│ ├── lib
│ ├── libexec
│ ├── local
│ ├── sbin
│ ├── share
│ ├── standalone
├── var -> private/var
└── Volumes

File system hierarchy
An edited version of the User or home tree, i.e. everyting inside /Users/kjhealy on my Mac:

├── Applications
├── bin
├── Box
├── Creative Cloud Files
├── Desktop
├── Documents
│ ├── bibs -> /Users/kjhealy/Library/texmf/bibtex/bib
│ ├── bookdown
│ ├── comments
│ ├── completed
│ ├── courses
│ ├── data
│ ├── letters
│ ├── misc
│ ├── nonsense
│ ├── ordinal-society
│ ├── papers
│ ├── sites
│ ├── source
│ ├── talks
│ ├── teaching
│ ├── templates
│ ├── vita
├── Downloads
├── Dropbox
├── Library
├── Movies
├── Music
├── Pictures
├── Public
├── scratch
├── tmp
└── Zotero

Local and Remote Files

Local Files
So far we’ve been working with files on our own computer. These local files
live somewhere in the file system on our own computer.

We’re also mostly going to be confining ourselves, in any particular project, to
files that are in or under our project directory. Like in the mptc_oecd project.
While we’re in an R session and working with mptc_oecd, we think of the
project directory as our working directory, and the top of the project
directory as the root of our little system of files and folders.

So data-raw/countries_iso3.tsv is a file that lives in the data-raw
folder inside the project directory. mptc_oecd.qmd lives at the top level of
the project directory.

But files can also be located remotely, on other computers, and we can access
them over the internet or a network.

Remote Files: URLs
A URL or Uniform Resource Locator is a kind of address that locates a
resource on the internet. It is, in effect, a path to a file that lives on another
computer somewhere, one that is accessible by us (or by the public in
general).

Remember, there’s
no such thing as

The Cloud, it’s just
Someone Else’s

Computer

Remote Files: URLs
A URL to the top or root level of a webserver looks like this:

A URL to a folder inside a webserver looks like this:

A URL to a specific file inside a webserver looks like this:

https://kieranhealy.org/

https://kieranhealy.org/publications/tos/

https://kieranhealy.org/files/misc/tos_cover_1024.png

https://kieranhealy.org/
https://kieranhealy.org/publications/tos/
https://kieranhealy.org/files/misc/tos_cover_1024.png

Remote Files: URLs
As you can see, a URL is just a file path, apart from the
https://kieranhealy.org bit at the start that tells your computer which
webserver to connect to.

You might wonder why paths to folders, like
https://kieranhealy.org/publications/ appear in your browser as a
web page. This is because the site is set up to serve a default file, usually
called index.html, when you ask for a folder.

Can we get remote files via the Terminal or command line? Of course we can.

Curl
The address shows a directory with some files in it.
One is called mortality.txt. We use the curl command:

The contents of the file just appear in the terminal window.

https://kjhealy.co/mptc/

curl https://kjhealy.co/mptc/mortality.txt

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 16160 100 16160 0 0 33681 0 --:--:-- --:--:-- --:--:-- 33666
England and Wales, Total Population, Death rates (period 1x1), Last modified: 02 Apr 2018; Methods Protocol: v6
(2017)

 Year Age Female Male Total
 1841 0 0.136067 0.169189 0.152777
 1841 1 0.059577 0.063208 0.061386
 1841 2 0.036406 0.036976 0.036689
 1841 3 0.024913 0.026055 0.025480
 1841 4 0.018457 0.019089 0.018772
 1841 5 0.013967 0.014279 0.014123
 1841 6 0.010870 0.011210 0.011040
 1841 7 0.008591 0.008985 0.008788
 1841 8 0.006860 0.007246 0.007053

https://kjhealy.co/mptc/

Curl
We can redirect it to a file instead:

mkdir tmp
curl https://kjhealy.co/mptc/mortality.txt > tmp/mortality.txt

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 16160 100 16160 0 0 34155 0 --:--:-- --:--:-- --:--:-- 34164

ls -l tmp/

total 32
-rw-r--r--@ 1 kjhealy staff 16160 Sep 23 13:57 mortality.txt

head tmp/mortality.txt

England and Wales, Total Population, Death rates (period 1x1), Last modified: 02 Apr 2018; Methods Protocol: v6
(2017)

 Year Age Female Male Total
 1841 0 0.136067 0.169189 0.152777
 1841 1 0.059577 0.063208 0.061386
 1841 2 0.036406 0.036976 0.036689
 1841 3 0.024913 0.026055 0.025480
 1841 4 0.018457 0.019089 0.018772
 1841 5 0.013967 0.014279 0.014123
 1841 6 0.010870 0.011210 0.011040

The Shell

What is it?

There are many shells

A command interpreter
echo "Hello there"

Hello there

Getting around the file system

Who and where
Who am I?

Where am I?

whoami

kjhealy

Print working directory
pwd

/Users/kjhealy/Documents/courses/mptc

Listing files
What is in here?

List files
ls

_extensions
_freeze
_motivation.qmd
_quarto.yml
_site
_targets
_targets.R
_variables.yml
_weekly-schedule.qmd
00_dummy_files
about
assets
assignment
avhrr
content
data
deploy.sh
example
files

Navigating the tree
Who am I?

Where am I?

What is my purpose in life?

whoami

kjhealy

pwd

/Users/kjhealy/Documents/courses/mptc

(Unix can't help you here)

Navigating the tree
cd files
ls
cd ..

01_1890_hollerith_codes.png
01_apple_macintosh.png
01_bryant_hard_drive.png
bib
examples
fars_spreadsheet_raw.png
misc
schedule.ics
scripts

Navigating the tree

Note the idea of commands having options, or switches.

ls -l

total 936
drwxr-xr-x 3 kjhealy staff 96 Jan 9 2024 _extensions
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _freeze
-rw-r--r--@ 1 kjhealy staff 3757 Aug 17 10:36 _motivation.qmd
-rw-r--r--@ 1 kjhealy staff 3656 Sep 23 13:11 _quarto.yml
drwxr-xr-x@ 2 kjhealy staff 64 Sep 23 13:56 _site
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _targets
-rw-r--r--@ 1 kjhealy staff 7552 Sep 23 13:50 _targets.R
-rw-r--r--@ 1 kjhealy staff 1009 Sep 23 13:33 _variables.yml
-rw-r--r--@ 1 kjhealy staff 974 Aug 16 21:28 _weekly-schedule.qmd
drwxr-xr-x@ 3 kjhealy staff 96 Sep 23 13:56 00_dummy_files
drwxr-xr-x@ 4 kjhealy staff 128 Sep 23 13:56 about
drwxr-xr-x@ 18 kjhealy staff 576 Aug 25 05:58 assets
drwxr-xr-x@ 17 kjhealy staff 544 Sep 23 13:56 assignment
lrwxr-xr-x 1 kjhealy staff 135 Nov 5 2024 avhrr ->
/Users/kjhealy/Documents/data/misc/noaa_ncei/raw/www.ncei.noaa.gov/data/sea-surface-temperature-optimum-
interpolation/v2.1/access/avhrr
drwxr-xr-x@ 14 kjhealy staff 448 Sep 23 13:56 content
drwxr-xr-x@ 6 kjhealy staff 192 Sep 23 07:42 data

Navigating the tree
ls /

Applications
bin
cores
dev
etc
home
Library
opt
private
sbin
System
tmp
Users
usr
var
Volumes

Path rules
If the path name begins with /, it is an absolute path, starting from the
filesystem root.

If the path name begins with ~, it will usually be expanded into an absolute
path name starting at your home directory (~).

Path rules
If the pathname does not begin with a / or ~ then the path name is relative to
the current directory.

Two relative special cases use entries that are in every Unix directory:

a. If the path name begins with ./, the path is relative to the current
directory, e.g., ./textfile, though this can also execute the file if it is
given executable file permissions.

b. If the path name begins with ../, the path is relative to the parent of the
current directory. For example, if your current directory is
/Users/kjhealy/Documents/papers then ../data means
/Users/kjhealy/Documents/data

File permissions
Who is using this file system anyway?

Unix derives from a world there there are multiple users and groups of users
who are all using slices (in terms of processor time and available permanent
storage) of a large central computer.

drwxr-xr-x@ 8 kjhealy staff 256 Aug 15 16:35 R
-rw-r--r--@ 1 kjhealy staff 1210 Aug 15 20:29 README.md

File permissions

In Unix systems there are three kinds of owner: the user (here kjhealy), the
group (here staff), and others or other users on the system.

drwxr-xr-x@ 8 kjhealy staff 256 Aug 15 16:35 R
-rw-r--r--@ 1 kjhealy staff 1210 Aug 15 20:29 README.md

File permissions

Three things you can do to a file:

read

write

execute

For files, “read” means open; “write” means edit, save, or delete; “execute”
means run if it’s an application or script.

For directories, “read” means list contents with ls, “write’ means create, delete,
or rename;”execute” means access or enter using cd

drwxr-xr-x@ 8 kjhealy staff 256 Aug 15 16:35 R
-rw-r--r--@ 1 kjhealy staff 1210 Aug 15 20:29 README.md

File permissions
❯ ls -l README.md

-rw-r--r--@ 1 kjhealy staff 1210 Aug 15 20:29 README.md

These permissions say rw-r--r-- or

The user can rw- read and write this file

The group can r-- read this file

The world can r-- read this file

Executable permissions are irrelevant here because it’s a text file.

File permissions

We change file permissions with the chmod command. So e.g. chmod 644
README.md means “change the permissions to rw-r--r--”.

A Tree
├── schedule
├── staging
│ ├── example
│ ├── content
│ ├── assignment
│ ├── slides
├── example
│ ├── 04-example-ggplot_files
├── projects
│ ├── 05-problem-set
├── R
├── content
├── assignment
├── html
│ ├── fonts
├── site_libs
│ ├── revealjs
│ ├── bootstrap
│ ├── quarto-html
│ ├

Changing directories
Change directory and list files
cd files
ls
cd ../slides

01_1890_hollerith_codes.png
01_apple_macintosh.png
01_bryant_hard_drive.png
bib
examples
fars_spreadsheet_raw.png
misc
schedule.ics
scripts

Some shell tools

Example files
Project at:

Download the zip file, for now via GitHub, and unzip it somewhere you can
find it. Or, better, practice your curl skills and download it from khealy.co,
like this:

https://github.com/kjhealy/mptc_text_examples

This time we use -o to specify the output file name, rather than using > to redirect STDOUT.
curl https://kjhealy.co/mptc/mptc_text_examples.zip -o mptc_text_examples.zip

Once you've downloaded it, unzip it:
unzip mptc_text_examples.zip

https://github.com/kjhealy/mptc_text_examples

What are we working with

These files are in my course site project, so your file path will be different! It
will be wherever you unzipped the files and the folder will be called
mptc_text_examples if you got it via curl, or mptc_text_examples_main
if you got it from GitHub.

ls files/examples/

_make-example
01_mptc_oecd_nocode.pdf
01_mptc_oecd_withcode.pdf
alice_in_wonderland.txt
alice_noboiler.txt
apple_mobility_daily_2021-04-12.csv
ascii_table.xlsx
bashrc.txt
basics.txt
census_edage.csv
congress
continent_sizes.csv
continent_tab.csv
continent_tab.tsv
countries_iso3.csv
countries.csv
country_iso3.tsv
country_tab.csv
country_tab.tsv

wc, cat, head, and tail

We can ask for a count of lines only:

wc files/examples/alice_in_wonderland.txt

 3761 29564 174392 files/examples/alice_in_wonderland.txt

wc -l files/examples/alice_in_wonderland.txt

 3761 files/examples/alice_in_wonderland.txt

wc, cat, head, and tail
cat concatenates and prints the files given to it.

cat files/examples/jabberwocky.txt

’Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.

“Beware the Jabberwock, my son!
 The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
 The frumious Bandersnatch!”

He took his vorpal sword in hand;
 Long time the manxome foe he sought—
So rested he by the Tumtum tree
 And stood awhile in thought.

And, as in uffish thought he stood,
 The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
 And burbled as it came!

wc, cat, head, and tail
The top:

The bottom:

head files/examples/alice_in_wonderland.txt

﻿The Project Gutenberg eBook of Alice's Adventures in Wonderland

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

tail files/examples/alice_in_wonderland.txt

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

wc, cat, head, and tail
There are 29 lines of boilerplate at the start of the book:

head -n 29 files/examples/alice_in_wonderland.txt

﻿The Project Gutenberg eBook of Alice's Adventures in Wonderland

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

Title: Alice's Adventures in Wonderland

Author: Lewis Carroll

Release date: June 27, 2008 [eBook #11]
 Most recently updated: March 30, 2021

Language: English

wc, cat, head, and tail
And 351 at the end:

tail -n 351 files/examples/alice_in_wonderland.txt | head -n 20

 *** END OF THE PROJECT GUTENBERG EBOOK ALICE'S ADVENTURES IN WONDERLAND ***

Updated editions will replace the previous one—the old editions will
be renamed.

Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for

wc, cat, head, and tail
We can use tail to skip the boilerplate at the top:

tail -n +29 files/examples/alice_in_wonderland.txt | head

Alice’s Adventures in Wonderland

by Lewis Carroll

THE MILLENNIUM FULCRUM EDITION 3.0

Contents

 CHAPTER I. Down the Rabbit-Hole

wc, cat, head, and tail
The shell can be treated like a programming language. That is, it has variables
and also flow control (loops, if-then-else, etc).

We can use some shell variables along with tail twice to skip the boilerplate at
the top and bottom, and put the result into a file of its own using > to redirect
the output from STDOUT:

This sets HEADSKIP to 29 and ENDSKIP to 351;
We can refer to them with $HEADSKIP and $ENDSKIP
HEADSKIP=29
ENDSKIP=351

The backticks ` ` here mean "Evaluate this command"; then put the result in a variable
BOOKLINES=`cat files/examples/alice_in_wonderland.txt| wc -l | tr ' ' '\n' | tail -1`

This line does the arithmetic using expr and makes the result a variable
GOODLINES=$(expr $BOOKLINES - $HEADSKIP - $ENDSKIP)

Now we use $HEADKSIP and $GOODLINES and create a new file
tail -n +$HEADSKIP files/examples/alice_in_wonderland.txt |
 head -n $GOODLINES > files/examples/alice_noboiler.txt

wc, cat, head, and tail
Now our wc will be different:

wc files/examples/alice_in_wonderland.txt

wc files/examples/alice_noboiler.txt

 3761 29564 174392 files/examples/alice_in_wonderland.txt
 3381 26524 154465 files/examples/alice_noboiler.txt

uniq, sort, and cut
A data file:

How many lines?

How many unique lines?

head files/examples/countries.csv

cname,iso3,iso2,continent
Afghanistan,AFG,AF,Asia
Algeria,DZA,DZ,Africa
Armenia,ARM,AM,Asia
Australia,AUS,AU,Oceania
Austria,AUT,AT,Europe
Azerbaijan,AZE,AZ,Asia
Bahrain,BHR,BH,Asia
Belarus,BLR,BY,Europe
Belgium,BEL,BE,Europe

wc -l files/examples/countries.csv

 214 files/examples/countries.csv

uniq files/examples/countries.csv | wc -l

 214

uniq, sort, and cut
Omit the header line
tail -n +2 files/examples/countries.csv | sort -r | head

Zimbabwe,ZWE,ZW,Africa
Zambia,ZMB,ZM,Africa
Yemen,YEM,YE,Asia
Western Sahara,ESH,EH,Africa
Wallis and Futuna,WLF,WF,Oceania
Viet Nam,VNM,VN,Asia
Vanuatu,VUT,VU,Oceania
Uzbekistan,UZB,UZ,Asia
Uruguay,URY,UY,South America
United States,USA,US,North America

uniq, sort, and cut
This doesn’t quite work because of the way the data is coded:

tail -n +2 files/examples/countries.csv | sort -t , -k4 -k1

Algeria,DZA,DZ,Africa
Angola,AGO,AO,Africa
Benin,BEN,BJ,Africa
Botswana,BWA,BW,Africa
Burkina Faso,BFA,BF,Africa
Burundi,BDI,BI,Africa
Cabo Verde,CPV,CV,Africa
Cameroon,CMR,CM,Africa
Central African Republic,CAF,CF,Africa
Chad,TCD,TD,Africa
Comoros,COM,KM,Africa
Congo,COG,CG,Africa
Côte d'Ivoire,CIV,CI,Africa
Djibouti,DJI,DJ,Africa
Egypt,EGY,EG,Africa
Equatorial Guinea,GNQ,GQ,Africa
Eritrea,ERI,ER,Africa
Ethiopia,ETH,ET,Africa
Gabon,GAB,GA,Africa

uniq, sort, and cut
cut slices out columns defined by a delimiter (by default \t or tab)

Again in this case it doesn’t quite behave as you might think!

cut -d , -f 2,4 files/examples/countries.csv

iso3,continent
AFG,Asia
DZA,Africa
ARM,Asia
AUS,Oceania
AUT,Europe
AZE,Asia
BHR,Asia
BLR,Europe
BEL,Europe
BRA,South America
KHM,Asia
CAN,North America
CHN,Asia
HRV,Europe
CZE,Europe
DNK,Europe
DOM,North America
ECU,South America

Finding files and finding text

find
find is for locating files and directories by name:

Everything in the `files/` subdirectory
find files

files
files/misc
files/misc/home-tree.txt
files/misc/root-tree.txt
files/.DS_Store
files/schedule.ics
files/01_apple_macintosh.png
files/01_bryant_hard_drive.png
files/fars_spreadsheet_raw.png
files/examples
files/examples/country_iso3.tsv
files/examples/jabberwocky.txt
files/examples/country_tab.csv
files/examples/ulysses.txt
files/examples/_make-example
files/examples/_make-example/mypaper.md
files/examples/_make-example/fig1.r
files/examples/_make-example/Makefile
files/examples/_make-example/README.md

find
We can use globbing (or wildcards) to narrow our search:

Everything underneath the `files/` subdirectory
whose name ends in `.csl`
find files -name "*.csl"

files/bib/samplesyllabus.csl
files/bib/american-political-science-association.csl
files/bib/chicago-fullnote-bibliography-no-bib.csl
files/bib/chicago-fullnote-bibliography.csl
files/bib/chicago-syllabus-no-bib.csl
files/bib/apa.csl
files/bib/chicago-author-date.csl
files/bib/chicago-note-bibliography.csl

find
Here we use the . to mean “Search in the current folder”

find . -name "*.xlsx"

./files/examples/symptoms.xlsx

./files/examples/fars_crash_report.xlsx

./files/examples/ascii_table.xlsx

./data/schedule.xlsx

./data/data_sources.xlsx

find
The -exec option lets us do things with each result.

The {} expands to each found file in turn.

Here we use echo to see what the rm (remove) command would do.

The quoted semicolon ";" or \; is required to end the line

If we omitted the echo here the found files really would be deleted one at a time.

find files -name "*.png" -exec echo rm {} ";"

rm files/01_apple_macintosh.png
rm files/01_bryant_hard_drive.png
rm files/fars_spreadsheet_raw.png
rm files/01_1890_hollerith_codes.png

find
We can also use xargs to act on search results:

Convert all these png files to jpg:

Everything underneath the `files/` subdirectory
whose name ends in `.png`
find files -name "*.png"

files/01_apple_macintosh.png
files/01_bryant_hard_drive.png
files/fars_spreadsheet_raw.png
files/01_1890_hollerith_codes.png

Convert everything underneath the `files/` subdirectory
whose name ends in `.png` to `.jpg` format, keeping the original files.
find files -name '*.png' -print0 | xargs -0 -r mogrify -format jpg

find
Check:

Delete them (with another method of deletion):

find files -name '*.png'
find files -name '*.jpg'

files/01_apple_macintosh.png
files/01_bryant_hard_drive.png
files/fars_spreadsheet_raw.png
files/01_1890_hollerith_codes.png
files/01_apple_macintosh.jpg
files/01_bryant_hard_drive.jpg
files/fars_spreadsheet_raw.jpg
files/01_1890_hollerith_codes.jpg

find files -name '*.jpg' -type f -delete

Perspective
Obviously you will not be doing this sort of thing every day of the week. But you
may well want to programmatically rename, move, convert, or otherwise
maniplate files in batches from time to time. Especially if there are a lot of
them, the shell can help you.

Naming things

Naming files
The better your names for things, the easier they will be to find (and
programmatically work with)

In civilized operating systems, names containing spaces and special
characters (such as ? ! , . # $ * <space> and the like) are not a
problem.

However, the more you work programatically, the more you will want to avoid
them.

Jenny Bryan’s 5 minute Normconf talk is a good overview of good habits

Naming files
Names should tell you something about what the file is

Names should avoid spaces and punctuation

Names should follow some reasonable convention

Names with numbers should sort in useful ways

Names should not be used to track the versions of files

Naming files
Find all files in or below the project directory that end in .qmd:

find . -name "*.qmd"

./schedule/index.qmd

./staging/example/04-example.qmd

./staging/example/11-example.qmd

./staging/example/08-example.qmd

./staging/example/07-example.qmd

./staging/example/09-example.qmd

./staging/example/05-example.qmd

./staging/example/06-example.qmd

./staging/example/03-example.qmd

./staging/content/09-content.qmd

./staging/content/10-content.qmd

./staging/content/06-content.qmd

./staging/content/03-content.qmd

./staging/content/11-content.qmd

./staging/content/08-content.qmd

./staging/content/07-content.qmd

./staging/content/12-content.qmd

./staging/assignment/04-assignment.qmd

./staging/assignment/03-assignment.qmd

Naming files
Find all files in or below the current directory that start with two characters
followed by -example and end with any other number of characters:

find . -name "??-example*"

./staging/example/04-example.qmd

./staging/example/11-example.qmd

./staging/example/08-example.qmd

./staging/example/07-example.qmd

./staging/example/09-example.qmd

./staging/example/05-example.qmd

./staging/example/06-example.qmd

./staging/example/03-example.qmd

./example/04-example-ggplot.html

./example/01-example-oecd.html

./example/04-example-ggplot.qmd

./example/03-example-shell.qmd

./example/01-example-oecd.qmd

./example/05-example-dplyr.qmd

./example/05-example-dplyr.html

./example/04-example-ggplot_files

./example/03-example-shell.html

./_freeze/example/01-example-oecd

./_freeze/example/05-example-dplyr

Sort order

See how these sort:

Not what we want.

mkdir tmp
touch tmp/{1..15}.txt

ls tmp/

1.txt
10.txt
11.txt
12.txt
13.txt
14.txt
15.txt
2.txt
3.txt
4.txt
5.txt
6.txt
7.txt
8.txt
9.txt

Sort order
rm -f tmp/*.txt
touch tmp/{01..15}.txt
ls tmp/

01.txt
02.txt
03.txt
04.txt
05.txt
06.txt
07.txt
08.txt
09.txt
10.txt
11.txt
12.txt
13.txt
14.txt
15.txt

Sort order

In general keep your names lower-case.

rm -f tmp/*.txt
touch tmp/{a..d}{01..03}.txt
ls -l tmp/
rm -rf tmp/
rm -rf ../tmp/

total 0
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 a01.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 a02.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 a03.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 b01.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 b02.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 b03.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 c01.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 c02.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 c03.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 d01.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 d02.txt
-rw-r--r--@ 1 kjhealy staff 0 Sep 23 13:57 d03.txt

Dates
Use the one true YMD format, ISO 8601:

YYYY-MM-DD

Naming files
Be consistent in your use of naming conventions

No need to get too clever, but …

data_clean/
data_raw/
docs/
figures/
R/01_clean-data.R
R/02_process-data.R
R/03_descriptive-figs-tables.R
R/04_brms-model.R
paper/
README.md

Unix naming conventions
Dotfiles and underscores

ls -l

total 936
drwxr-xr-x 3 kjhealy staff 96 Jan 9 2024 _extensions
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _freeze
-rw-r--r--@ 1 kjhealy staff 3757 Aug 17 10:36 _motivation.qmd
-rw-r--r--@ 1 kjhealy staff 3656 Sep 23 13:11 _quarto.yml
drwxr-xr-x@ 2 kjhealy staff 64 Sep 23 13:56 _site
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _targets
-rw-r--r--@ 1 kjhealy staff 7552 Sep 23 13:50 _targets.R
-rw-r--r--@ 1 kjhealy staff 1009 Sep 23 13:33 _variables.yml
-rw-r--r--@ 1 kjhealy staff 974 Aug 16 21:28 _weekly-schedule.qmd
drwxr-xr-x@ 3 kjhealy staff 96 Sep 23 13:56 00_dummy_files
drwxr-xr-x@ 4 kjhealy staff 128 Sep 23 13:56 about
drwxr-xr-x@ 18 kjhealy staff 576 Aug 25 05:58 assets
drwxr-xr-x@ 17 kjhealy staff 544 Sep 23 13:56 assignment
lrwxr-xr-x 1 kjhealy staff 135 Nov 5 2024 avhrr ->
/Users/kjhealy/Documents/data/misc/noaa_ncei/raw/www.ncei.noaa.gov/data/sea-surface-temperature-optimum-
interpolation/v2.1/access/avhrr
drwxr-xr-x@ 14 kjhealy staff 448 Sep 23 13:56 content
drwxr-xr-x@ 6 kjhealy staff 192 Sep 23 07:42 data

Unix naming conventions
ls -la

total 1032
drwxr-xr-x 3 kjhealy staff 96 Jan 9 2024 _extensions
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _freeze
-rw-r--r--@ 1 kjhealy staff 3757 Aug 17 10:36 _motivation.qmd
-rw-r--r--@ 1 kjhealy staff 3656 Sep 23 13:11 _quarto.yml
drwxr-xr-x@ 2 kjhealy staff 64 Sep 23 13:56 _site
drwxr-xr-x@ 8 kjhealy staff 256 Sep 23 13:56 _targets
-rw-r--r--@ 1 kjhealy staff 7552 Sep 23 13:50 _targets.R
-rw-r--r--@ 1 kjhealy staff 1009 Sep 23 13:33 _variables.yml
-rw-r--r--@ 1 kjhealy staff 974 Aug 16 21:28 _weekly-schedule.qmd
drwxr-xr-x@ 48 kjhealy staff 1536 Sep 23 13:57 .
drwxr-xr-x@ 38 kjhealy staff 1216 Sep 16 08:51 ..
-rw-r--r--@ 1 kjhealy staff 10244 Sep 22 08:48 .DS_Store
drwxr-xr-x@ 16 kjhealy staff 512 Sep 23 13:55 .git
-rw-r--r--@ 1 kjhealy staff 383 Aug 19 09:19 .gitignore
-rw-r--r-- 1 kjhealy staff 71 Jan 9 2024 .gitmodules
-rw-r--r--@ 1 kjhealy staff 821 Aug 16 2023 .luarc.json
drwxr-xr-x@ 34 kjhealy staff 1088 Sep 23 13:56 .quarto
-rw-r--r--@ 1 kjhealy staff 16656 Sep 8 11:34 .Rhistory

Unix naming conventions
Files and folders beginning with a period, ., are “hidden”

They won’t show up via ls

By convention they are often used for configuration information

In the world of R, files or folders beginning with an underscore, _, are often
“generated” or are visible configuration files. (This is a weak convention.)

The structure of plain-text config files will depend on the thing they are
configuring. It might just a list of words or options, or it might be a structured
file based on a Markup language like YAML or TOML, or it might be written to
be parsed in R or Python, etc.

Files have extensions by convention. These exist to help the user and they can
be useful when writing scripts. And specific applications or processes may
expect to look for and use files with specific names or extensions. But the
operating system in general doesn’t care about them.

Unix naming conventions
Here’s the .gitignore file for this project:

.Rproj.user

.Rhistory

.RData

.Ruserdata

/.quarto/
/_site/
/renv/

/staging/

/_freeze/
/_targets/

about/*.pdf
about/*.html
assignment/*.html
example/*.html
schedule/*.html
syllabus/*.html
data/dfstrat.csv
slides/*.pdf
slides/*.html
slides/fonts/*

Customizing your shell

Bash (often the Linux default)
A .bashrc file to configure non-login shells for Bash:

Put the contents of this file in your ~/.bashrc file
~/.bashrc: executed by bash(1) for non-login shells.
see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
for examples

If not running interactively, don't do anything
case $- in
 i) ;;
 *) return;;
esac

don't put duplicate lines or lines starting with space in the history.
See bash(1) for more options
HISTCONTROL=ignoreboth

append to the history file, don't overwrite it
shopt -s histappend

for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000
HISTFILESIZE=2000

check the window size after each command and, if necessary,
update the values of LINES and COLUMNS.

Zsh (the Mac default)
Put the contents of this file in your ~/.zshrc file.
Source: https://github.com/belak/zsh-utils?tab=readme-ov-file

[[! -d "$HOME/.antigen"]] && git clone https://github.com/zsh-users/antigen.git "$HOME/.antigen"
source "$HOME/.antigen/antigen.zsh"

Set the default plugin repo to be zsh-utils
antigen use belak/zsh-utils --branch=main

Specify completions we want before the completion module
antigen bundle zsh-users/zsh-completions

Specify plugins we want
antigen bundle editor@main
antigen bundle history@main
antigen bundle prompt@main
antigen bundle utility@main
antigen bundle completion@main

Specify additional external plugins we want
antigen bundle zsh-users/zsh-syntax-highlighting

Load everything
antigen apply

Caution

Installing things via shell scripts should only be done from trusted sources!

Don’t blindly install things

The Unix way of thinking

Stepping back
Your computer stores files and runs commands.

The files are stored in a large hierarchy called a filesystem.

You issue instructions to run particluar commands at a command line that is
provided by a shell, which is how you the user talk to the operating system.

Unix commands and utilities generally try to do a specific thing to files or
running processes.

The Unix conception of a ‘file’ is very flexible. Connections to other computers
can act like files.

Unix commands are often composable using pipes.

The Unix pipe
Unix commands work with some input and may produce some output

Unix systems have the concepts of “standard input”, “standard output”, and
“standard error” as streams where things come from, where they go to, and
where problems are reported.

The idea of a sequence of commands or, more generally, functions that can be
composed or pipelined in a smooth sequence is a very general and very
powerful idea that we will soon see in action in R and that you may come
across in many other settings as well.

The Unix pipe
The output of the ls command again:

ls

_extensions
_freeze
_motivation.qmd
_quarto.yml
_site
_targets
_targets.R
_variables.yml
_weekly-schedule.qmd
00_dummy_files
about
assets
assignment
avhrr
content
data
deploy.sh
example
files

The Unix pipe
We can send, or pipe, this output to another command, instead of to the
terminal:

The wc command counts the number of words in a file, or in whatever is sent
to it via STDIN.

The -l switch to wc means ‘just count lines instead of words’

ls | wc -l

 36

The Unix pipe
Like with pipelines in R, we can compose sequences of actions at the prompt:

❯ ls -lh access.log
-rw-r--r-- 1 root root 7.0M Aug 29 16:00 access.log

❯ head access.log
192.195.49.31 - - [27/Aug/2023:00:01:11 +0000] "GET / HTTP/1.1" 200 19219 "https://www.google.com/" "Mozilla/5.0
192.195.49.31 - - [27/Aug/2023:00:01:12 +0000] "GET /libs/tufte-css-2015.12.29/tufte.css HTTP/1.1" 200 2025 "https
192.195.49.31 - - [27/Aug/2023:00:01:12 +0000] "GET /libs/tufte-css-2015.12.29/envisioned.css HTTP/1.1" 200 888 "h
192.195.49.31 - - [27/Aug/2023:00:01:12 +0000] "GET /css/tablesaw-stackonly.css HTTP/1.1" 200 1640 "https://socviz
192.195.49.31 - - [27/Aug/2023:00:01:12 +0000] "GET /css/nudge.css HTTP/1.1" 200 1675 "https://socviz.co/" "Mozill
192.195.49.31 - - [27/Aug/2023:00:01:12 +0000] "GET /css/sourcesans.css HTTP/1.1" 200 1492 "https://socviz.co/" "M
192.195.49.31 - - [27/Aug/2023:00:01:13 +0000] "GET /js/jquery.js HTTP/1.1" 200 30464 "https://socviz.co/" "Mozill
192.195.49.31 - - [27/Aug/2023:00:01:13 +0000] "GET /js/tablesaw-stackonly.js HTTP/1.1" 200 2996 "https://socviz.c
192.195.49.31 - - [27/Aug/2023:00:01:13 +0000] "GET /js/nudge.min.js HTTP/1.1" 200 937 "https://socviz.co/" "Mozil
52.13.187.67 - - [27/Aug/2023:00:01:13 +0000] "GET /dataviz-pdfl_files/figure-html4/ch-03-fig-lexp-gdp-10-1.png HT

The Unix pipe
Like with pipelines in R, we can compose sequences of actions at the prompt:

❯ head access.log | awk '// {print $11}'

"https://www.google.com/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"https://socviz.co/"
"-"

The Unix pipe
Like with pipelines in R, we can compose sequences of actions at the prompt:

❯ awk '// {print $11}' access.log | sort | uniq -c | sort -nr | head -n 15

 9729 "https://socviz.co/lookatdata.html"
 4851 "-"
 4212 "https://socviz.co/"
 1719 "https://socviz.co/makeplot.html"
 1477 "https://bookdown.org/"
 1466 "https://socviz.co/gettingstarted.html"
 1373 "https://socviz.co/groupfacettx.html"
 864 "https://socviz.co/workgeoms.html"
 794 "https://socviz.co/maps.html"
 733 "https://socviz.co/refineplots.html"
 671 "https://socviz.co/index.html"
 349 "https://socviz.co/appendix.html"
 228 "https://socviz.co/modeling.html"
 153 "https://www.google.com/"
 50 "http://vissoc.co/"

The Unix pipe
We can do a lot with a pipeline:

This is the number of Citi Bikes available in New York City at the time these
slides were made.

We usually won’t use the Unix command line or shell to things like this. We’ll do
it in R. You could also do it in other languages. But basic shell competence
remains extremely handy for many more common tasks.

curl -s 'http://api.citybik.es/v2/networks/citi-bike-nyc' |
 jq '.network.stations[].free_bikes' |
 gpaste -sd+ |
 bc

30820

CitiBike example courtesy of Jeroen Janssens

Shell Scripting

Shell Scripts
If you find yourself doing the same task repeatedly, think about whether it
makes sense to write a script

Shell scripts can become mini-programs, but can also be just one or two lines
that pull together a few commands

They really show their strength when there’s some fiddly thing you want to
do to a lot of files or directories

Shell Scripts

#! or “shebang” line saying where the interpreter is

chmod 755 script.sh or chmod +x script.sh to make executable

The interpreter doesn’t have to be the shell: other languages can be scripted
too

#!/usr/bin/env bash

echo "Hello World!"

Shell Scripts
#!/usr/bin/env bash

Make a thumbnail for each PNG
for i in *.png; do

 FILENAME=$(basename -- "$i") # Full filename
 EXTENSION="${FILENAME##*.}" # Extension only
 FILENAME="${FILENAME%.*}" # Filename without extension

 convert "$i" -thumbnail 500 "$FILENAME-thumb.$EXTENSION";

done;

Shell Scripts
The shell can talk to the clipboard:

Back from the clipboard:

echo I am sending this sentence to the clipboard | pbcopy

pbpaste | wc -c

 44

On Windows with Cygwin the corresponding commands are getclip and putclip.

In an era of
Generative AI and
LLMs, why are we

covering this
stuff?

Because Unix is
still everywhere

And will be for a long time to come, I’m afraid.

“Why am I doing this?”
As soon as you try to do anything of any sort of technical complexity, or just
simple reproducibility, with your computer—even using the newest and
coolest tools—I promise you’ll eventually find yourself in a world governed by
the metaphors and methods Unix originated, and, very likely, in a literal Unix-
derived environment.

That is, you will be in some sort of folder-based hierarchy; you will edit plain-
text files in order to configure, launch, generate, or capture the output of
applications; and you will do this by way of instructions written down as a
series of commands that follow some sort of regular syntax. The details of
those instructions (and the particular conventions they use) will vary
depending on the task at hand. But in essence you will always be doing the
same thing.

