
Make Some Graphs
Modern Plain Text Social Science

Week 04

Kieran Healy
Duke University

September 2025

Make Some Graphs

Load our libraries
library(here) # manage file paths
library(socviz) # data and some useful functions
library(tidyverse) # your friend and mine

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.2
✔ ggplot2 4.0.0 ✔ tibble 3.3.0
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.1.0
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(gapminder) # some data

A Plot’s Components

What we need our code to make
Data represented by visual

elements;

like position, length, color, and
size;

Each measured on some
scale;

Each scale with a labeled
guide;

With the plot itself also titled
and labeled.

How does
ggplot
do this?

ggplot’s flow of action

Here’s the whole thing, start to finish

Flow of action

We’ll go through it step by step

Flow of action

ggplot’s flow of action

What we start with

ggplot’s flow of action

Where we’re going

ggplot’s flow of action

Core steps

ggplot’s flow of action

Optional steps

ggplot’s flow of action: required

Tidy data

ggplot’s flow of action: required

Aesthetic mappings

ggplot’s flow of action: required

Geom

Let’s go piece by
piece

Start with the data
gapminder

A tibble: 1,704 × 6
 country continent year lifeExp pop gdpPercap
 <fct> <fct> <int> <dbl> <int> <dbl>
 1 Afghanistan Asia 1952 28.8 8425333 779.
 2 Afghanistan Asia 1957 30.3 9240934 821.
 3 Afghanistan Asia 1962 32.0 10267083 853.
 4 Afghanistan Asia 1967 34.0 11537966 836.
 5 Afghanistan Asia 1972 36.1 13079460 740.
 6 Afghanistan Asia 1977 38.4 14880372 786.
 7 Afghanistan Asia 1982 39.9 12881816 978.
 8 Afghanistan Asia 1987 40.8 13867957 852.
 9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
ℹ 1,694 more rows

dim(gapminder)

[1] 1704 6

Create a plot object
Data is the gapminder tibble.

p <- ggplot(data = gapminder)

Map variables to aesthetics
Tell ggplot the variables you want represented by visual elements on the plot

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Map variables to aesthetics
The mapping = aes(...) call links variables to things you will see on the plot.

x and y represent the quantities determining position on the x and y axes.

Other aesthetic mappings can include, e.g., color, shape, size, and fill.

Mappings do not directly specify the particular,
e.g., colors, shapes, or line styles that will appear
on the plot. Rather, they establish which
variables in the data will be represented by
which visible elements on the plot.

p has data and mappings but no geom

This empty plot has no geoms.

p

Add a geom

A scatterplot of Life Expectancy vs GDP

p + geom_point()

Try a different geom

A scatterplot of Life Expectancy vs GDP

p + geom_smooth()

Build your plots layer by layer

Life Expectancy vs GDP, using a smoother.

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth()

This process is additive
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

This process is additive
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth()

This process is additive
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_smooth() +
 geom_point()

Every geom is a function
Functions take arguments

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Keep Layering
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

Keep Layering
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point()

Keep Layering
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Keep Layering
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10()

Fix the labels
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))

Fix the labels
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point()

Fix the labels
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm")

Fix the labels
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y=lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar())

Add labels, title, and caption
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point() +
 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar()) +
 labs(x = "GDP Per Capita",
 y = "Life Expectancy in Years",
 title = "Economic Growth and Life Expectancy",
 subtitle = "Data points are country-years",
 caption = "Source: Gapminder.")

Mapping vs Setting
your plot’s
aesthetics

“Can I change the color of the points?”
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = "purple"))

Put in an object for convenience
p_out <- p + geom_point() +
 geom_smooth(method = "loess") +
 scale_x_log10()

What has gone wrong here?
p_out

Try again
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Put in an object for convenience
p_out <- p + geom_point(color = "purple") +
 geom_smooth(method = "loess") +
 scale_x_log10()

Try again
p_out

Geoms can take many arguments
Here we set color, size, and alpha. Meanwhile x and y are mapped.

We also give non-default values to some other arguments

p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p_out <- p + geom_point(alpha = 0.3) +
 geom_smooth(color = "orange",
 se = FALSE,
 linewidth = 8,
 method = "lm") +
 scale_x_log10()

Geoms can take many arguments
p_out

alpha for overplotting
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

 geom_smooth(method = "lm") +
 scale_x_log10(labels = scales::label_dollar()) +
 labs(x = "GDP Per Capita",
 y = "Life Expectancy in Years",
 title = "Economic Growth and Life Expectancy",
 subtitle = "Data points are country-years",
 caption = "Source: Gapminder.")

Map or Set values
per geom

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point()

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point() +
 geom_smooth(method = "loess")

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp,
 color = continent,
 fill = continent))
p + geom_point() +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent))

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess")

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Geoms can take their own mappings
p <- ggplot(data = gapminder,
 mapping = aes(x = gdpPercap,
 y = lifeExp))
p + geom_point(mapping = aes(color = continent)) +
 geom_smooth(method = "loess") +
 scale_x_log10(labels = scales::label_dollar())

Pay attention to
which scales and

guides are drawn,
and why

Guides and scales reflect aes() mappings
mapping = aes(color =
continent, fill = continent)

Guides and scales reflect aes() mappings
mapping = aes(color =
continent, fill = continent)

mapping = aes(color =
continent)

Remember: Every
mapped variable

has a scale

Saving your work

Use ggsave()
Save the most recent plot
ggsave(filename = "figures/my_figure.png")

Use here() for more robust file paths
ggsave(filename = here("figures", "my_figure.png"))

A plot object
p_out <- p + geom_point(mapping = aes(color = log(pop))) +
 scale_x_log10()

ggsave(filename = here("figures", "lifexp_vs_gdp_gradient.pdf"),
 plot = p_out)

ggsave(here("figures", "lifexp_vs_gdp_gradient.png"),
 plot = p_out,
 width = 8,
 height = 5)

Customize figure output
In single code chunks
Set particular options in any quarto code chunk by including lines like these at
the top of the chunk:

#| fig-height: 8
#| fig-width: 5
#| fig-cap: "A caption"

For the whole document
Use the YAML header:

format:
 html:
 fig-width: 8
 fig-height: 6
 pdf:
 fig-width: 7
 fig-height: 5

