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Your Workbench





RStudio is an IDE for R



A kitchen is an IDE for Meals



R and RStudio

RStudio at startup



RStudio schematic overview



RStudio schematic overview



Think in terms of Data + Transformations,
written out as code, rather than a series of

point-and-click steps



Our starting data + our code is what’s “real” in
our projects, not the final output or any

intermediate objects



The IDE is the thing that helps us keep track of
and control over the code we write and the

outputs we produce.



RStudio at startup



RStudio at startup



RStudio at startup



RStudio at startup



RStudio at startup



Your code is what’s real in your project



Consider not showing output inline



Writing documents



Use Quarto to
produce and

reproduce your
work



Where we want to end up

PDF out



Where we want to end up

HTML out



Where we want to end up

Word out



How to get there?
We could write an R script with some notes inside,

using it to create some figures and tables, paste them
into our document.

This will work well. The more complex our projects
get the more likely it is we will write code like this. It

will also look less and less like a single all-in-one-
breath script and more like a structured collection R

files that combine to do many things.

But to begin we can also do things a little differently,
by taking a more notebook-based approach. For many

simpler and routine uses, this will be better.



We can make this …



… by writing this



The code gets replaced by its output
This way of doing things is called a Literate Programming or Notebook approach.



A Quarto file with markdown and code chunks



A Quarto file with markdown and code chunks, annotated



This approach has its limitations, which we will return to, but it’s very useful
and has many benefits.



Strengths and weaknesses
Notebooks work
smoothly when

Your document or report is small and
self-contained.

Your analysis is quick or lightweight.

You are making slides.

You are making a lot of similar
reports from a template.

You regularly refer to calculated
items in the text of your analysis.



In Practice
Notebook-style documents like Quarto files are great as part of larger projects.
The more complex your project, the less likely it will straightforwardly fit into a
single notebook. More likely you will find yourself, first, splitting parts of a
complex project up into different notebooks; and then, second, writing R scripts
that programatically clean and pre-process data, run analyses, and produce
some outputs—such as key tables and figures—that you then incorporate into a
Quarto document indirectly. Not by copying and pasting, but by pointing to
those outputs.



Basic markdown summary
Desired style Use the following Markdown annotation

Heading 1 # Heading 1

Heading 2 ## Heading 2

Heading 3 ### Heading 3 (Actual heading styles will vary.)

Paragraph Just start typing

Bold **Bold**

Italic *Italic*

Images [Alternate text for image](path/image.jpg)

[Link text](https://www.visualizingsociety.com/)

Unordered Lists

- First - First

- Second. - Second

- Third - Third

Ordered Lists

1. First 1. First

2. Second. 2. Second

3. Third 3. Third

Footnote.¹ Footnote[^notelabel]

¹The note’s content. [^notelabel] The note's content.

Hyperlinks

https://www.visualizingsociety.com/


The right frame of mind
This is like learning how to drive a car, or how to cook in a kitchen … or
learning to speak a language.

After some orientation to what’s where, you will learn best by doing.

Software is a pain, but you won’t crash the car or burn your house down.



TYPE OUT
YOUR CODE

BY HAND



Samuel Beckett



Getting Oriented



Before we start



Split
Apply

Combine



Before we start
gapminder

# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows



Before we start

Afghanistan Asia 1952 28.8 8425333 779.4

Afghanistan Asia 1957 30.3 9240934 820.9

Afghanistan Asia 1962 32.0 10267083 853.1

Afghanistan Asia 1967 34.0 11537966 836.2

Afghanistan Asia 1972 36.1 13079460 740.0

Afghanistan Asia 1977 38.4 14880372 786.1

Afghanistan Asia 1982 39.9 12881816 978.0

Afghanistan Asia 1987 40.8 13867957 852.4

Afghanistan Asia 1992 41.7 16317921 649.3

Afghanistan Asia 1997 41.8 22227415 635.3

Afghanistan Asia 2002 42.1 25268405 726.7

Afghanistan Asia 2007 43.8 31889923 974.6

Country Continent Year Lifeexp Pop Gdppercap



Before we start
Table 1: Average life expectancy by continent, 1952-2007

Year Africa Americas Asia Europe Oceania

1952 39.1 53.3 46.3 64.4 69.3

1957 41.3 56.0 49.3 66.7 70.3

1962 43.3 58.4 51.6 68.5 71.1

1967 45.3 60.4 54.7 69.7 71.3

1972 47.5 62.4 57.3 70.8 71.9

1977 49.6 64.4 59.6 71.9 72.9

1982 51.6 66.2 62.6 72.8 74.3

1987 53.3 68.1 64.9 73.6 75.3

1992 53.6 69.6 66.5 74.4 76.9

1997 53.6 71.2 68.0 75.5 78.2

2002 53.3 72.4 69.2 76.7 79.7

2007 54.8 73.6 70.7 77.6 80.7



Loading the tidyverse libraries

The tidyverse has several components.

We’ll return to this message about Conflicts later.

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.3     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.0
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.0
✔ purrr     1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package to force all conflicts to become errors



Tidyverse components
library(tidyverse)

Loading tidyverse: ggplot2

Loading tidyverse: tibble

Loading tidyverse: tidyr

Loading tidyverse: readr

Loading tidyverse: purrr

Loading tidyverse: dplyr

Call the package and …

<| Draw graphs

<| Nicer data tables

<| Tidy your data

<| Get data into R

<| Fancy Iteration

<| Action verbs for tables



What R looks like
Code you can type and run:

Output:

This is equivalent to running the code above, typing my_numbers at the console,
and hitting enter.

## Inside code chunks, lines beginning with a # character are comments
## Comments are ignored by R

my_numbers <- c(1, 1, 2, 4, 1, 3, 1, 5) # Anything after a # character is ignored as well

my_numbers

[1] 1 1 2 4 1 3 1 5



What R looks like
By convention, code output in documents is prefixed by ##

Also by convention, outputting vectors, etc, gets a counter keeping track of the
number of elements. For example,

letters

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"



Some things to know about R



0. It’s a calculator
Arithmetic

(31 * 12) / 2^4

[1] 23.25

sqrt(25)

[1] 5

log(100)

[1] 4.60517

log10(100)

[1] 2



0. It’s a calculator
Arithmetic Logic

(31 * 12) / 2^4

[1] 23.25

sqrt(25)

[1] 5

log(100)

[1] 4.60517

log10(100)

[1] 2

4 < 10

[1] TRUE

4 > 2 & 1 > 0.5 # The "&" means "and"

[1] TRUE

4 < 2 | 1 > 0.5 # The "|" means "or"

[1] TRUE

4 < 2 | 1 < 0.5

[1] FALSE



Boolean and Logical operators
Logical equality and inequality (yielding a TRUE or FALSE result) is done with ==
and !=. Other logical operators include <, >, <=, >=, and ! for negation.

## A logical test
2 == 2 # Write `=` twice

[1] TRUE

## This will cause an error, because R will think you are trying to assign a value
2 = 2

## Error in 2 = 2 : invalid (do_set) left-hand side to assignment

3 != 7 # Write `!` and then `=` to make `!=`

[1] TRUE



1. Everything in R has a name
my_numbers # We created this a few minutes ago

[1] 1 1 2 4 1 3 1 5

letters  # This one is built-in

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

pi  # Also built-in

[1] 3.141593



Some names are forbidden
Or it’s a really bad idea to try to use them

TRUE
FALSE
Inf
NaN
NA
NULL

for
if
while
break
function



2. Everything is an object
There are a few built-in objects:

letters

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

pi

[1] 3.141593

LETTERS

 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"



3. You can create objects
In fact, this is mostly what we will be doing.

Objects are created by assigning a thing to a name:

The c() function combines or concatenates things

## name... gets ... this stuff
my_numbers <- c(1, 2, 3, 1, 3, 5, 25, 10)

## name ... gets ... the output of the function `c()`
your_numbers <- c(5, 31, 71, 1, 3, 21, 6, 52)



The assignment operator
The assignment operator performs the action of creating objects

Use a keyboard shortcut to write it:

Press option and - on a Mac

Press alt and - on Windows



4. Do things to objects with functions
## this object... gets ... the output of this function
my_numbers <- c(1, 2, 3, 1, 3, 5, 25, 10)

your_numbers <- c(5, 31, 71, 1, 3, 21, 6, 52)

my_numbers

[1]  1  2  3  1  3  5 25 10



4. Do things to objects with functions
Functions can be identified by the parentheses after their names.

my_numbers

[1]  1  2  3  1  3  5 25 10

## If you run this you'll get an error
mean()



What functions usually do
They take inputs to arguments

They perform actions

They produce, or return, outputs

mean(x = my_numbers)



What functions usually do
They take inputs to arguments

They perform actions

They produce, or return, outputs

mean(x = my_numbers)

[1] 6.25



What functions usually do
## Get the mean of what? Of x.
## You need to tell the function what x is
mean(x = my_numbers)

[1] 6.25

mean(x = your_numbers)

[1] 23.75



What functions usually do
If you don’t name the arguments, R assumes you are providing them in the
order the function expects.

mean(your_numbers)

[1] 23.75



What functions usually do
What arguments? Which order? Read the function’s help page

How to read an R help page?

help(mean)

## quicker
?mean



What functions usually do
Arguments often tell the function what to do in specific circumstances

Or select from one of several options

missing_numbers <- c(1:10, NA, 20, 32, 50, 104, 32, 147, 99, NA, 45)

mean(missing_numbers)

[1] NA

mean(missing_numbers, na.rm = TRUE)

[1] 32.44444

## Look at ?mean to see what `trim` does
mean(missing_numbers, na.rm = TRUE, trim = 0.1)

[1] 27.25



What functions usually do
There are all kinds of functions. They return different things.

summary(my_numbers)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.75    3.00    6.25    6.25   25.00 



What functions usually do
You can assign the output of a function to a name, which turns it into an object.
(Otherwise it’ll send its output to the console.)

my_summary <- summary(my_numbers)

my_summary

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.75    3.00    6.25    6.25   25.00 



What functions usually do
Objects hang around in your work environment until they are overwritten by
you, or are deleted.

## rm() function removes objects
rm(my_summary)

my_summary

## Error: object 'my_summary' not found



Functions can be nested

Nested functions are evaluated from the inside out.

c(1:20)

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

mean(c(1:20))

[1] 10.5

summary(mean(c(1:20)))

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   10.5    10.5    10.5    10.5    10.5    10.5 

names(summary(mean(c(1:20))))

[1] "Min."    "1st Qu." "Median"  "Mean"    "3rd Qu." "Max."   

length(names(summary(mean(c(1:20)))))

[1] 6



Use the pipe operator: |>
Instead of deeply nesting functions in parentheses, we can use the pipe operator:

Read this operator as “and then”

c(1:20) |> mean() |> summary() |> names() |>  length()

[1] 6



Use the pipe operator: |>
Better, vertical space is free in R:

c(1:20) |>
  mean() |>
  summary() |>
  names() |>
  length()

[1] 6



Pipelines make code more readable
Not great, Bob:

Notice how the first thing you read is the last operation performed.

  serve(stir(pour_in_pan(whisk(crack_eggs(get_from_fridge(eggs), into = "bowl"), len = 40), temp = "med-high")))



Pipelines make code more readable
We can use vertical space and indents, but it’s really not much better:

serve(
  stir(
    pour_in_pan(
      whisk(
        crack_eggs(
          get_from_fridge(eggs),
        into = "bowl"),
      len = 40),
    temp = "med-high")
  )
)



Pipelines make code more readable
Much nicer:

We’ll still use nested parentheses quite a bit, often in the context of a
function working inside a pipeline. But it’s good not to have too many levels of
nesting.

eggs |>
  get_from_fridge() |>
  crack_eggs(into = "bowl") |>
  whisk(len = 40) |>
  pour_in_pan(temp = "med-high") |>
  stir() |>
  serve()



Functions are bundled into packages
Packages are loaded into your working environment using the library()
function:

## A package containing a dataset rather than functions
library(gapminder)

gapminder

# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows



Functions are bundled into packages
You need only install a package once (and occasionally update it):

## Do at least once for each package. Once done, not needed each time.
install.packages("palmerpenguins", repos = "http://cran.rstudio.com")

## Needed sometimes, especially after an R major version upgrade.
update.packages(repos = "http://cran.rstudio.com")



Functions are bundled into packages
But you must load the package in each R session before you can access its
contents:

## To load a package, usually at the start of your RMarkdown document or script file
library(palmerpenguins)
penguins

# A tibble: 344 × 8
   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct>   <fct>              <dbl>         <dbl>             <int>       <int>
 1 Adelie  Torgersen           39.1          18.7               181        3750
 2 Adelie  Torgersen           39.5          17.4               186        3800
 3 Adelie  Torgersen           40.3          18                 195        3250
 4 Adelie  Torgersen           NA            NA                  NA          NA
 5 Adelie  Torgersen           36.7          19.3               193        3450
 6 Adelie  Torgersen           39.3          20.6               190        3650
 7 Adelie  Torgersen           38.9          17.8               181        3625
 8 Adelie  Torgersen           39.2          19.6               195        4675
 9 Adelie  Torgersen           34.1          18.1               193        3475
10 Adelie  Torgersen           42            20.2               190        4250
# ℹ 334 more rows
# ℹ 2 more variables: sex <fct>, year <int>



Grabbing a single function with ::

species sex 2007 2008 2009

Adelie female 22 25 26

Adelie male 22 25 26

Adelie NA 6 NA NA

Chinstrap female 13 9 12

Chinstrap male 13 9 12

Gentoo female 16 22 20

Gentoo male 17 23 21

Gentoo NA 1 1 3

# A little glimpse of what we'll do soon
penguins |>
  count(species, sex, year) |>
  pivot_wider(names_from = year, values_from = n) |>
  tinytable::tt()



Remember those conflicts?

Notice how some functions in different packages have the same names.

Related concepts of namespaces and environments.



The scope of names
x <- c(1:10)
y <- c(90:100)

x

 [1]  1  2  3  4  5  6  7  8  9 10

y

 [1]  90  91  92  93  94  95  96  97  98  99 100

mean()

## Error in mean.default() : argument "x" is missing, with no default



The scope of names
mean(x) # argument names are internal to functions

[1] 5.5

mean(x = x)

[1] 5.5

mean(x = y)

[1] 95

x

 [1]  1  2  3  4  5  6  7  8  9 10

y

 [1]  90  91  92  93  94  95  96  97  98  99 100



5. Vector types; Object classes
I’m going to speak somewhat loosely here for now, and gloss over some
distinctions between object classes and data structures, as well as kinds of
objects and their attributes.



5. Vector types; Object classes
Objects are made of one or more vectors. A vector can, in effect, have a single
type: integer, double, logical, character, factor, date, etc. That is, vectors are
“atomic”. Complex objects are mostly lists of vectors of different sorts, or nested
lists of other simpler objects that are themselves ultimately made up of vectors
of



5. Vector types; Object classes
The object inspector in RStudio is your friend.

You can ask an object what it is at the console, too:

class(my_numbers)

[1] "numeric"

typeof(my_numbers)

[1] "double"



Types of vector

Hadley Wickham, Advanced R



Types of vector
my_int <- c(1, 3, 5, 6, 10)
is.integer(my_int)

[1] FALSE

is.double(my_int)

[1] TRUE

my_int <- as.integer(my_int)
is.integer(my_int)

[1] TRUE

my_chr <- c("Mary", "had", "a", "little", "lamb")
is.character(my_chr)

[1] TRUE

my_lgl <- c(TRUE, FALSE, TRUE)
is.logical(my_lgl)

[1] TRUE

Hadley Wickham, Advanced R



Types of vector
## Factors are for storing undordered or ordered categorical variables
x <- factor(c("Yes", "No", "No", "Maybe", "Yes", "Yes", "Yes", "No"))
x

[1] Yes   No    No    Maybe Yes   Yes   Yes   No   
Levels: Maybe No Yes

summary(x) # Alphabetical order by default

Maybe    No   Yes 
    1     3     4 

typeof(x)       # Underneath, a factor is a type of integer ...

[1] "integer"

attributes(x)   # ... with labels for its numbers, or "levels"

$levels
[1] "Maybe" "No"    "Yes"  

$class
[1] "factor"

levels(x)

[1] "Maybe" "No"    "Yes"  

is.ordered(x)

[1] FALSE



Vectors can’t be heterogenous
Objects can be manually or automatically coerced from one class to another.
Take care.

class(my_numbers)

[1] "numeric"

my_new_vector <- c(my_numbers, "Apple")

my_new_vector # vectors are homogeneous/atomic

[1] "1"     "2"     "3"     "1"     "3"     "5"     "25"    "10"    "Apple"

class(my_new_vector)

[1] "character"



Vectors can’t be heterogenous
Objects can be manually or automatically coerced from one class to another.
Take care.

my_dbl <- c(2.1, 4.77, 30.111, 3.14519)
is.double(my_dbl)

[1] TRUE

my_dbl <- as.integer(my_dbl)

my_dbl

[1]  2  4 30  3



A table of data is a kind of list
gapminder # tibbles and data frames can contain vectors of different types

# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows

class(gapminder)

[1] "tbl_df"     "tbl"        "data.frame"

typeof(gapminder) # hmm

[1] "list"



A table of data is a kind of list
Lists are collections of vectors of possibly different types and lengths, or
collections of more complex objects that are themselves ultimately made out
of vectors. Underneath, most complex R objects are some kind of list with
different components that can be accessed by some function that knows the
names of the things inside the list.

A data frame is a list of vectors of the same length, where the vectors can be
of different types (e.g. numeric, character, logical, etc).

A data frame is a natural representation of what most real tables of data look
like. Having it be a basic sort of entity in the programming language IS ONE
OF R’s BEST IDEAS AND EASILY UNDERRATED!

A tibble is an enhanced data frame



Some classes are versions of others
Base R’s trusty data.frame

library(socviz)
titanic

      fate    sex    n percent
1 perished   male 1364    62.0
2 perished female  126     5.7
3 survived   male  367    16.7
4 survived female  344    15.6

class(titanic)

[1] "data.frame"

## The `$` idiom picks out a named column here;
## more generally, the named element of a list
titanic$percent

[1] 62.0  5.7 16.7 15.6



Some classes are versions of others
Base R’s trusty data.frame The Tidyverse’s enhanced tibble

A data frame and a tibble are both fundamentally a list of vectors of the same
length, where the vectors can be of different types (e.g. numeric, character,
logical, etc)

library(socviz)
titanic

      fate    sex    n percent
1 perished   male 1364    62.0
2 perished female  126     5.7
3 survived   male  367    16.7
4 survived female  344    15.6

class(titanic)

[1] "data.frame"

## The `$` idiom picks out a named column here;
## more generally, the named element of a list
titanic$percent

[1] 62.0  5.7 16.7 15.6

## tibbles are build on data frames
titanic_tb <- as_tibble(titanic)
titanic_tb

# A tibble: 4 × 4
  fate     sex        n percent
  <fct>    <fct>  <dbl>   <dbl>
1 perished male    1364    62  
2 perished female   126     5.7
3 survived male     367    16.7
4 survived female   344    15.6

class(titanic_tb)

[1] "tbl_df"     "tbl"        "data.frame"



All of this will be clearer in use

Tidyverse tools are generally type safe, meaning their functions return the
same type of thing every time, or fail if they cannot do this. So it’s good to
know about the various data types.

gss_sm

# A tibble: 2,867 × 32
    year    id ballot       age childs sibs   degree race  sex   region income16
   <dbl> <dbl> <labelled> <dbl>  <dbl> <labe> <fct>  <fct> <fct> <fct>  <fct>   
 1  2016     1 1             47      3 2      Bache… White Male  New E… $170000…
 2  2016     2 2             61      0 3      High … White Male  New E… $50000 …
 3  2016     3 3             72      2 3      Bache… White Male  New E… $75000 …
 4  2016     4 1             43      4 3      High … White Fema… New E… $170000…
 5  2016     5 3             55      2 2      Gradu… White Fema… New E… $170000…
 6  2016     6 2             53      2 2      Junio… White Fema… New E… $60000 …
 7  2016     7 1             50      2 2      High … White Male  New E… $170000…
 8  2016     8 3             23      3 6      High … Other Fema… Middl… $30000 …
 9  2016     9 1             45      3 5      High … Black Male  Middl… $60000 …
10  2016    10 3             71      4 1      Junio… White Male  Middl… $60000 …
# ℹ 2,857 more rows
# ℹ 21 more variables: relig <fct>, marital <fct>, padeg <fct>, madeg <fct>,
#   partyid <fct>, polviews <fct>, happy <fct>, partners <fct>, grass <fct>,
#   zodiac <fct>, pres12 <labelled>, wtssall <dbl>, income_rc <fct>,
#   agegrp <fct>, ageq <fct>, siblings <fct>, kids <fct>, religion <fct>,
#   bigregion <fct>, partners_rc <fct>, obama <dbl>



6. Arithmetic on vectors
In R, all numbers are vectors of different sorts. Even single numbers
(“scalars”) are conceptually vectors of length 1.

Arithmetic on vectors (and arrays generally) follows a series of recycling rules
that favor ease of expression of vectorized, “elementwise” operations.

See if you can predict what the following operations do:



6. Arithmetic on vectors
my_numbers

[1]  1  2  3  1  3  5 25 10

result1 <- my_numbers + 1



6. Arithmetic on vectors
my_numbers

[1]  1  2  3  1  3  5 25 10

result1 <- my_numbers + 1

result1

[1]  2  3  4  2  4  6 26 11



6. Arithmetic on vectors
result2 <- my_numbers + my_numbers



6. Arithmetic on vectors
result2 <- my_numbers + my_numbers

result2

[1]  2  4  6  2  6 10 50 20



6. Arithmetic on vectors
two_nums <- c(5, 10)

result3 <- my_numbers + two_nums



6. Arithmetic on vectors
two_nums <- c(5, 10)

result3 <- my_numbers + two_nums

result3

[1]  6 12  8 11  8 15 30 20



6. Arithmetic on vectors
three_nums <- c(1, 5, 10)

result4 <- my_numbers + three_nums

Warning in my_numbers + three_nums: longer object length is not a multiple of
shorter object length



6. Arithmetic on vectors

Note that you get a warning here. It’ll still do it, though! Don’t ignore warnings
until you understand what they mean.

three_nums <- c(1, 5, 10)

result4 <- my_numbers + three_nums

Warning in my_numbers + three_nums: longer object length is not a multiple of
shorter object length

result4

[1]  2  7 13  2  8 15 26 15



7. R will be frustrating
The IDE tries its best to help you. Learn to attend to what it is trying to say.



Let’s Go!



Time to make a plot
Like before:

gapminder

# A tibble: 1,704 × 6
   country     continent  year lifeExp      pop gdpPercap
   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
 1 Afghanistan Asia       1952    28.8  8425333      779.
 2 Afghanistan Asia       1957    30.3  9240934      821.
 3 Afghanistan Asia       1962    32.0 10267083      853.
 4 Afghanistan Asia       1967    34.0 11537966      836.
 5 Afghanistan Asia       1972    36.1 13079460      740.
 6 Afghanistan Asia       1977    38.4 14880372      786.
 7 Afghanistan Asia       1982    39.9 12881816      978.
 8 Afghanistan Asia       1987    40.8 13867957      852.
 9 Afghanistan Asia       1992    41.7 16317921      649.
10 Afghanistan Asia       1997    41.8 22227415      635.
# ℹ 1,694 more rows



Like before
library(tidyverse)
library(gapminder)

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))

p + geom_point()



What we did

Load the packages we need: tidyverse and gapminder

library(gapminder)



What we did

New object named p gets the output of the ggplot() function, given these
arguments

Notice how one of the arguments, mapping, is itself taking the output of a
function named aes()

p <- ggplot(data = gapminder,
            mapping = aes(x = gdpPercap,
                          y = lifeExp))



What we did

Show me the output of the p object and the geom_point() function.

The + here acts just like the |> pipe, but for ggplot functions only. (This is an
accident of history.)

p + geom_point()



And what is R doing?
R objects are just lists of stuff to use or things to do



Objects are like Bento Boxes



The p object



Peek in with the object inspector



Peek in with the object inspector



Appendix: A Few More R Details



Logic: Watch out!
Here’s a gotcha. You might think you could write 3 < 5 & 7 and have it be
interpreted as “Three is less than five and also less than seven [True or False?]”:

It seems to work!

3 < 5 & 7

[1] TRUE



Logic: Watch out!
But now try 3 < 5 & 1, where your intention is “Three is less than five and
also less than one [True or False?]”

What’s happening is that 3 < 5 is evaluated first, and resolves to TRUE,
leaving us with the expression TRUE & 1.

R interprets this as TRUE & as.logical(1).

In Boolean algebra, 1 resolves to TRUE. Any other number is FALSE. So,

3 < 5 & 1

[1] TRUE



Logic: Watch out!

You have to make your comparisons explicit.

TRUE & as.logical(1)

[1] TRUE

3 < 5 & 3 < 1

[1] FALSE



Logic and floating point arithmetic
Let’s evaluate 0.6 + 0.2 == 0.8



Logic and floating point arithmetic
Let’s evaluate 0.6 + 0.2 == 0.8
0.6 + 0.2 == 0.8

[1] TRUE



Logic and floating point arithmetic
Let’s evaluate 0.6 + 0.2 == 0.8

Now let’s try 0.6 + 0.3 == 0.9

0.6 + 0.2 == 0.8

[1] TRUE



Logic and floating point arithmetic
Let’s evaluate 0.6 + 0.2 == 0.8

Now let’s try 0.6 + 0.3 == 0.9

Er. That’s not right.

0.6 + 0.2 == 0.8

[1] TRUE

0.6 + 0.3 == 0.9

[1] FALSE



Welcome to floating point math!
In Base 10, you can’t precisely express fractions like 

and . They come out as repeating decimals: 0.3333…

or 0.1111… You can cleanly represent fractions that use
a prime factor of the base, which in the case of Base 10
are 2 and 5.

1
3

1
9



Welcome to floating point math!
In Base 10, you can’t precisely express fractions like 

and . They come out as repeating decimals: 0.3333…

or 0.1111… You can cleanly represent fractions that use
a prime factor of the base, which in the case of Base 10
are 2 and 5.

Computers represent numbers as binary (i.e. Base 2)
floating-points. In Base 2, the only prime factor is 2. So

 or  in binary would be repeating.

1
3

1
9

1
5

1
10



Logic and floating point arithmetic
When you do binary math on repeating numbers and convert back to decimals
you get tiny leftovers, and this can mess up logical comparisons of equality. The
all.equal() function exists for this purpose.

See e.g. 

print(.1 + .2)

[1] 0.3

print(.1 + .2, digits=18)

[1] 0.300000000000000044

all.equal(.1 + .2, 0.3)

[1] TRUE

https://0.30000000000000004.com

https://0.30000000000000004.com/


More later on why
this might bite you,

and how to deal
with it

For now, “Be very careful about doing logical comparisons on floating-point numbers” is not a bad rule.



Assignment with =
You can use = as well as <- for assignment.

On the other hand, = has a different meaning when used in functions.

I’m going to use <- for assignment throughout.

Be consistent either way.

my_numbers = c(1, 2, 3, 1, 3, 5, 25)

my_numbers

[1]  1  2  3  1  3  5 25



Assignment with =



The other pipe: %>%
The Base R pipe operator, |> is a relatively recent addition to R.

Piping operations were originally introduced in a package called called
magrittr, where it took the form %>%



The other pipe: %>%
The Base R pipe operator, |> is a relatively recent addition to R.

Piping operations were originally introduced in a package called called
magrittr, where it took the form %>%

It’s been so successful, a version of it has been incorporated into Base R. It
mostly but does not quite work the same way as %>% in every case.



The other pipe: %>%
The Base R pipe operator, |> is a relatively recent addition to R.

Piping operations were originally introduced in a package called called
magrittr, where it took the form %>%

It’s been so successful, a version of it has been incorporated into Base R. It
mostly but does not quite work the same way as %>% in every case. We’ll use
the Base R pipe in this course, but you’ll see the Magrittr pipe a lot out in the
world.

With the Base R pipe, you can only pass an object to the first argument in a function. This is fine for most tidyverse
pipelines, where the first argument is usually (implicitly) the data. But it does mean that most Base R functions
will continue not to be easily piped, as most of them do not follow the convention of passing the current data as
the first argument



Object classes
Objects can have more than one (nested) class:

summary(my_numbers)

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.000   1.500   3.000   5.714   4.000  25.000 

my_smry <- summary(my_numbers) # remember, outputs can be assigned to a name, creating an object

class(summary(my_numbers)) # functions can be nested, and are evaluated from the inside out

[1] "summaryDefault" "table"         

class(my_smry) # equivalent to the previous line

[1] "summaryDefault" "table"         



Object classes
typeof(my_smry)

[1] "double"

attributes(my_smry)

$names
[1] "Min."    "1st Qu." "Median"  "Mean"    "3rd Qu." "Max."   

$class
[1] "summaryDefault" "table"         

## In this case, the functions extract the corresponding attribute
class(my_smry)

[1] "summaryDefault" "table"         

names(my_smry)

[1] "Min."    "1st Qu." "Median"  "Mean"    "3rd Qu." "Max."   


