Iterating on Data

Modern Plain Text Social Science: Week 9

Kieran Healy

Duke University

October 29, 2024

Iterating on data with purrr and map

Load the packages, as always

library(here)      # manage file paths
library(socviz)    # data and some useful functions
library(tidyverse) # your friend and mine

Split

Apply

Combine

The Core Idea

  • Split or group the data into pieces
  • Apply a function, i.e. act on the data in some way
  • Combine the results back into a table

Sometimes we start out in a “split” state, as when we have multiple data files, and we need to read them in and then combine them.

More than one data file

  • Inside files/examples/ is a folder named congress/
# A little trick from the fs package: 
fs::dir_tree(here("files", "examples", "congress"))
/Users/kjhealy/Documents/courses/mptc/files/examples/congress
├── 01_79_congress.csv
├── 02_80_congress.csv
├── 03_81_congress.csv
├── 04_82_congress.csv
├── 05_83_congress.csv
├── 06_84_congress.csv
├── 07_85_congress.csv
├── 08_86_congress.csv
├── 09_87_congress.csv
├── 10_88_congress.csv
├── 11_89_congress.csv
├── 12_90_congress.csv
├── 13_91_congress.csv
├── 14_92_congress.csv
├── 15_93_congress.csv
├── 16_94_congress.csv
├── 17_95_congress.csv
├── 18_96_congress.csv
├── 19_97_congress.csv
├── 20_98_congress.csv
├── 21_99_congress.csv
├── 22_100_congress.csv
├── 23_101_congress.csv
├── 24_102_congress.csv
├── 25_103_congress.csv
├── 26_104_congress.csv
├── 27_105_congress.csv
├── 28_106_congress.csv
├── 29_107_congress.csv
├── 30_108_congress.csv
├── 31_109_congress.csv
├── 32_110_congress.csv
├── 33_111_congress.csv
├── 34_112_congress.csv
├── 35_113_congress.csv
├── 36_114_congress.csv
├── 37_115_congress.csv
└── 38_116_congress.csv

More than one data file

Let’s look at one.

read_csv(here("files", "examples", "congress", "17_95_congress.csv")) |> 
  janitor::clean_names() |> 
  head()
# A tibble: 6 × 25
  last     first   middle suffix nickname born  death sex   position party state
  <chr>    <chr>   <chr>  <chr>  <chr>    <chr> <chr> <chr> <chr>    <chr> <chr>
1 Abdnor   James   <NA>   <NA>   <NA>     02/1… 11/0… M     U.S. Re… Repu… SD   
2 Abourezk James   George <NA>   <NA>     02/2… <NA>  M     U.S. Se… Demo… SD   
3 Adams    Brockm… <NA>   <NA>   Brock    01/1… 09/1… M     U.S. Re… Demo… WA   
4 Addabbo  Joseph  Patri… <NA>   <NA>     03/1… 04/1… M     U.S. Re… Demo… NY   
5 Aiken    George  David  <NA>   <NA>     08/2… 11/1… M     U.S. Se… Repu… VT   
6 Akaka    Daniel  Kahik… <NA>   <NA>     09/1… 04/0… M     U.S. Re… Demo… HI   
# ℹ 14 more variables: district <chr>, start <chr>, end <chr>, religion <chr>,
#   race <chr>, educational_attainment <chr>, job_type1 <chr>, job_type2 <chr>,
#   job_type3 <chr>, job_type4 <chr>, job_type5 <lgl>, mil1 <chr>, mil2 <chr>,
#   mil3 <chr>

We often find ourselves in this situation. We know each file has the same structure, and we would like to use them all at once.

Loops?

How to read them all in?

One traditional way, which we could do in R, is to write an explicit loop that iterated over a vector of filenames, read each file, and then joined the results together in a tall rectangle.

# Pseudocode

filenames <- c("01_79_congress.csv", "02_80_congress.csv", "03_81_congress.csv",
                "04_82_congress.csv" [etc etc])

collected_files <- NULL

for(i in 1:length(filenames)) {
      new_file <- read_file(filenames[i])
      collected_files <- append_to(collected_files, new_files)
}

Loops?

  • You may have noticed we have not written any loops, however.
  • While loops are still lurking there underneath the surface, what we will do instead is to take advantage of the combination of vectors and functions and map one to the other in order to generate results.
  • Speaking loosely, think of map() as a way of iterating without writing loops. You start with a vector of things. You feed it one thing at a time to some function. The function does whatever it does. You get back output that is the same length as your input, and of a specific type.

Mapping is just a kind of iteration

  • The purrr package provides a big family of mapping functions. One reason there are a lot of them is that purrr, like the rest of the tidyverse, is picky about data types.
  • So in addition to the basic map(), which always returns a list, we also have map_chr(), map_int(), map_dbl(), map_lgl() and others. They always return the data type indicated by their suffix, or die trying.

Vectorized arithmetic again

The simplest cases are not that different from the vectorized arithmetic we’re already familiar with.

a <- c(1:10)

b <- 1

# You know what R will do here
a + b
 [1]  2  3  4  5  6  7  8  9 10 11

R’s vectorized rules add b to every element of a. In a sense, the + operation can be thought of as a function that takes each element of a and does something with it. In this case “add b”.

Vectorized arithmetic again

We can make this explicit by writing a function:

add_b <- function(x) {
  b <- 1
  x + b # for any x
}

Vectorized arithmetic again

We can make this explicit by writing a function:

add_b <- function(x) {
  b <- 1
  x + b # for any x
}

Now:

add_b(x = a)
 [1]  2  3  4  5  6  7  8  9 10 11

Vectorized arithmetic again

Again, R’s vectorized approach means it automatically adds b to every element of the x we give it.

add_b(x = 10)
[1] 11
add_b(x = c(1, 99, 1000))
[1]    2  100 1001

Iterating in a pipeline

Some operations can’t directly be vectorized in this way, which is why we need to manually iterate, or will want to write loops.

library(gapminder)
gapminder |> 
  summarize(country_n = n_distinct(country), 
            continent_n = n_distinct(continent), 
            year_n = n_distinct(year), 
            lifeExp_n = n_distinct(lifeExp), 
            population_n = n_distinct(population))
# A tibble: 1 × 5
  country_n continent_n year_n lifeExp_n population_n
      <int>       <int>  <int>     <int>        <int>
1       142           5     12      1626         4060

That’s tedious to write! Computers are supposed to allow us to avoid that sort of thing.

Iterating in a pipeline

So how would we iterate this? What we want is to apply the n_distinct() function to each column of gapminder, but in a way that still allows us to use pipelines and so on.

library(gapminder)
gapminder |> 
  summarize(n_distinct(country), 
            n_distinct(continent), 
            n_distinct(year), 
            n_distinct(lifeExp), 
            n_distinct(population))
# A tibble: 1 × 5
  `n_distinct(country)` `n_distinct(continent)` `n_distinct(year)`
                  <int>                   <int>              <int>
1                   142                       5                 12
# ℹ 2 more variables: `n_distinct(lifeExp)` <int>,
#   `n_distinct(population)` <int>

Iterating in a pipeline

You’d use across(), like this:

gapminder |> 
  summarize(across(everything(), n_distinct))
# A tibble: 1 × 6
  country continent  year lifeExp   pop gdpPercap
    <int>     <int> <int>   <int> <int>     <int>
1     142         5    12    1626  1704      1704

Iterating in a pipeline

But you could also do this …

  map(gapminder, n_distinct)
$country
[1] 142

$continent
[1] 5

$year
[1] 12

$lifeExp
[1] 1626

$pop
[1] 1704

$gdpPercap
[1] 1704
  • Read it as “Feed each column of gapminder to the n_distinct() function.
  • (This is pretty much what across() is doing more nicely.)

Iterating in a pipeline

Or, in pipeline form:

gapminder |> 
  map(n_distinct)
$country
[1] 142

$continent
[1] 5

$year
[1] 12

$lifeExp
[1] 1626

$pop
[1] 1704

$gdpPercap
[1] 1704

You can see we are getting a list back.

Iterating in a pipeline

Or, in pipeline form:

result <- gapminder |> 
  map(n_distinct)

class(result)
[1] "list"
result$continent
[1] 5
result[[2]]
[1] 5

Iterating in a pipeline

But we know n_distinct() should always return an integer. So we use map_int() instead of the generic map().

gapminder |> 
  map_int(n_distinct)
  country continent      year   lifeExp       pop gdpPercap 
      142         5        12      1626      1704      1704 

The thing about the map() family is that they can deal with all kinds of input types and output types.

Get a vector of filenames

filenames <- dir(path = here("files", "examples", "congress"),
                 pattern = "*.csv",
                 full.names = TRUE)

filenames[1:15] # Just displaying the first 15, to save slide space
 [1] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/01_79_congress.csv"
 [2] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/02_80_congress.csv"
 [3] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/03_81_congress.csv"
 [4] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/04_82_congress.csv"
 [5] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/05_83_congress.csv"
 [6] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/06_84_congress.csv"
 [7] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/07_85_congress.csv"
 [8] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/08_86_congress.csv"
 [9] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/09_87_congress.csv"
[10] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/10_88_congress.csv"
[11] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/11_89_congress.csv"
[12] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/12_90_congress.csv"
[13] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/13_91_congress.csv"
[14] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/14_92_congress.csv"
[15] "/Users/kjhealy/Documents/courses/mptc/files/examples/congress/15_93_congress.csv"

And feed it to read_csv()

… using map() and binding the resulting list into a tibble.

df <- filenames |> 
  map(read_csv) |> 
  list_rbind(names_to = "congress") |> 
  janitor::clean_names()

df
# A tibble: 20,580 × 26
   congress last   first middle suffix nickname born  death sex   position party
      <int> <chr>  <chr> <chr>  <chr>  <chr>    <chr> <chr> <chr> <chr>    <chr>
 1        1 Abern… Thom… Gerst… <NA>   <NA>     05/1… 01/2… M     U.S. Re… Demo…
 2        1 Adams  Sher… <NA>   <NA>   <NA>     01/0… 10/2… M     U.S. Re… Repu…
 3        1 Aiken  Geor… David  <NA>   <NA>     08/2… 11/1… M     U.S. Se… Repu…
 4        1 Allen  Asa   Leona… <NA>   <NA>     01/0… 01/0… M     U.S. Re… Demo…
 5        1 Allen  Leo   Elwood <NA>   <NA>     10/0… 01/1… M     U.S. Re… Repu…
 6        1 Almond J.    Linds… Jr.    <NA>     06/1… 04/1… M     U.S. Re… Demo…
 7        1 Ander… Herm… Carl   <NA>   <NA>     01/2… 07/2… M     U.S. Re… Repu…
 8        1 Ander… Clin… Presba <NA>   <NA>     10/2… 11/1… M     U.S. Re… Demo…
 9        1 Ander… John  Zuing… <NA>   <NA>     03/2… 02/0… M     U.S. Re… Repu…
10        1 Andre… Augu… Herman <NA>   <NA>     10/1… 01/1… M     U.S. Re… Repu…
# ℹ 20,570 more rows
# ℹ 15 more variables: state <chr>, district <chr>, start <chr>, end <chr>,
#   religion <chr>, race <chr>, educational_attainment <chr>, job_type1 <chr>,
#   job_type2 <chr>, job_type3 <chr>, job_type4 <chr>, job_type5 <chr>,
#   mil1 <chr>, mil2 <chr>, mil3 <chr>

read_csv() can do this directly

In fact map() is not required for this particular use:

tmp <- read_csv(filenames, id = "path",
                name_repair = janitor::make_clean_names)

tmp |> 
  mutate(congress = stringr::str_extract(path, "_\\d{2,3}_congress"), 
         congress = stringr::str_extract(congress, "\\d{2,3}")) |> 
  relocate(congress)
# A tibble: 20,580 × 27
   congress path   last  first middle suffix nickname born  death sex   position
   <chr>    <chr>  <chr> <chr> <chr>  <chr>  <chr>    <chr> <chr> <chr> <chr>   
 1 79       /User… Aber… Thom… Gerst… <NA>   <NA>     05/1… 01/2… M     U.S. Re…
 2 79       /User… Adams Sher… <NA>   <NA>   <NA>     01/0… 10/2… M     U.S. Re…
 3 79       /User… Aiken Geor… David  <NA>   <NA>     08/2… 11/1… M     U.S. Se…
 4 79       /User… Allen Asa   Leona… <NA>   <NA>     01/0… 01/0… M     U.S. Re…
 5 79       /User… Allen Leo   Elwood <NA>   <NA>     10/0… 01/1… M     U.S. Re…
 6 79       /User… Almo… J.    Linds… Jr.    <NA>     06/1… 04/1… M     U.S. Re…
 7 79       /User… Ande… Herm… Carl   <NA>   <NA>     01/2… 07/2… M     U.S. Re…
 8 79       /User… Ande… Clin… Presba <NA>   <NA>     10/2… 11/1… M     U.S. Re…
 9 79       /User… Ande… John  Zuing… <NA>   <NA>     03/2… 02/0… M     U.S. Re…
10 79       /User… Andr… Augu… Herman <NA>   <NA>     10/1… 01/1… M     U.S. Re…
# ℹ 20,570 more rows
# ℹ 16 more variables: party <chr>, state <chr>, district <chr>, start <chr>,
#   end <chr>, religion <chr>, race <chr>, educational_attainment <chr>,
#   job_type1 <chr>, job_type2 <chr>, job_type3 <chr>, job_type4 <chr>,
#   job_type5 <chr>, mil1 <chr>, mil2 <chr>, mil3 <chr>

Example: Iterating on the U.S. Census

Iterating on the U.S. Census

Mapped iteration is very general, and not just for local files

## Register for a free Census API key
library(tidycensus)
out <- get_acs(geography = "county", 
                    variables = "B19013_001",
                    state = "NY", 
                    county = "New York", 
                    survey = "acs1",
                    year = 2005)
out
# A tibble: 1 × 5
  GEOID NAME                      variable   estimate   moe
  <chr> <chr>                     <chr>         <dbl> <dbl>
1 36061 New York County, New York B19013_001    55973  1462

Iterating on the U.S. Census

All counties in New York State for a specific year

out <- get_acs(geography = "county", 
                    variables = "B19013_001",
                    state = "NY", 
                    survey = "acs1",
                    year = 2005)
out
# A tibble: 38 × 5
   GEOID NAME                         variable   estimate   moe
   <chr> <chr>                        <chr>         <dbl> <dbl>
 1 36001 Albany County, New York      B19013_001    50054  2030
 2 36005 Bronx County, New York       B19013_001    29228   853
 3 36007 Broome County, New York      B19013_001    36394  2340
 4 36009 Cattaraugus County, New York B19013_001    37580  2282
 5 36011 Cayuga County, New York      B19013_001    42057  2406
 6 36013 Chautauqua County, New York  B19013_001    35495  2077
 7 36015 Chemung County, New York     B19013_001    37418  3143
 8 36019 Clinton County, New York     B19013_001    44757  3500
 9 36027 Dutchess County, New York    B19013_001    61889  2431
10 36029 Erie County, New York        B19013_001    41967  1231
# ℹ 28 more rows

Iterating on the U.S. Census

What if we want the results for every available year? First, a handy function: set_names()

x <- c(1:10)

x
 [1]  1  2  3  4  5  6  7  8  9 10
x <- set_names(x, nm = letters[1:10])

x
 a  b  c  d  e  f  g  h  i  j 
 1  2  3  4  5  6  7  8  9 10 

Iterating on the U.S. Census

By default, set_names() will label a vector with that vector’s values:

c(1:10) |> 
  set_names()
 1  2  3  4  5  6  7  8  9 10 
 1  2  3  4  5  6  7  8  9 10 

Iterating on the U.S. Census

This works with map() just fine:

df <- 2005:2019 |> 
  map(\(x) get_acs(geography = "county",
                   variables = "B19013_001",
                   state = "NY",
                   survey = "acs1",
                   year = x)) |> 
  list_rbind(names_to = "year") 
df
# A tibble: 580 × 6
    year GEOID NAME                         variable   estimate   moe
   <int> <chr> <chr>                        <chr>         <dbl> <dbl>
 1     1 36001 Albany County, New York      B19013_001    50054  2030
 2     1 36005 Bronx County, New York       B19013_001    29228   853
 3     1 36007 Broome County, New York      B19013_001    36394  2340
 4     1 36009 Cattaraugus County, New York B19013_001    37580  2282
 5     1 36011 Cayuga County, New York      B19013_001    42057  2406
 6     1 36013 Chautauqua County, New York  B19013_001    35495  2077
 7     1 36015 Chemung County, New York     B19013_001    37418  3143
 8     1 36019 Clinton County, New York     B19013_001    44757  3500
 9     1 36027 Dutchess County, New York    B19013_001    61889  2431
10     1 36029 Erie County, New York        B19013_001    41967  1231
# ℹ 570 more rows

Iterating on the U.S. Census

Our id column tracks the year. But we’d like it to be the year. So, we use set_names():

df <- 2005:2019 |> 
  set_names() |> 
  map(\(x) get_acs(geography = "county",
                   variables = "B19013_001",
                   state = "NY",
                   survey = "acs1",
                   year = x)) |> 
  list_rbind(names_to = "year") |>
  mutate(year = as.integer(year))

Iterating on the U.S. Census

df
# A tibble: 580 × 6
    year GEOID NAME                         variable   estimate   moe
   <int> <chr> <chr>                        <chr>         <dbl> <dbl>
 1  2005 36001 Albany County, New York      B19013_001    50054  2030
 2  2005 36005 Bronx County, New York       B19013_001    29228   853
 3  2005 36007 Broome County, New York      B19013_001    36394  2340
 4  2005 36009 Cattaraugus County, New York B19013_001    37580  2282
 5  2005 36011 Cayuga County, New York      B19013_001    42057  2406
 6  2005 36013 Chautauqua County, New York  B19013_001    35495  2077
 7  2005 36015 Chemung County, New York     B19013_001    37418  3143
 8  2005 36019 Clinton County, New York     B19013_001    44757  3500
 9  2005 36027 Dutchess County, New York    B19013_001    61889  2431
10  2005 36029 Erie County, New York        B19013_001    41967  1231
# ℹ 570 more rows

Now year is just the year. The year column will be created as a character vector, so we converted it back to an integer again at the end.

Iterating on the U.S. Census

p_out <- 2005:2019 |>
  set_names() |>
  map(\(x) get_acs(geography = "county",
                   variables = "B19013_001",
                   state = "NY",
                   survey = "acs1",
                   year = x)) |>
  list_rbind(names_to = "year") |>
  mutate(year = as.integer(year)) |>
  ggplot(mapping = aes(x = year, y = estimate, group = year)) +
  geom_boxplot(fill = "lightblue", alpha = 0.5, outlier.alpha = 0) +
  geom_jitter(position = position_jitter(width = 0.1), shape = 1) +
  scale_y_continuous(labels = scales::label_dollar()) +
  labs(x = "Year", y = "Dollars",
       title = "Median Household Income by County in New York State, 2005-2019",
       subtitle = "ACS 1-year estimates", caption = "Data: U.S. Census Bureau.") 

Iterating on the U.S. Census

print(p_out)

Iterating on the U.S. Census

# This live call to the Census API draws the graph underneath
2005:2019 |>
  set_names() |>
  map(\(x) get_acs(geography = "county", variables = "B19013_001", 
                   state = "NY", survey = "acs1", year = x)) |>
  list_rbind(names_to = "year") |>
  mutate(year = as.integer(year)) |>
  ggplot(mapping = aes(x = year, y = estimate, group = year)) +
  geom_boxplot(fill = "lightblue", alpha = 0.5, outlier.alpha = 0) +
  geom_jitter(position = position_jitter(width = 0.1), shape = 1) +
  scale_y_continuous(labels = scales::label_dollar()) +
  labs(x = "Year", y = "Dollars", title = "Median Household Income by County in New York State, 2005-2019",
       subtitle = "ACS 1-year estimates", caption = "Data: U.S. Census Bureau.") 

Example: cleaning up congress

Cleaning up congress

df <- filenames |> 
  map(read_csv) |> 
  list_rbind(names_to = "congress") |> 
  janitor::clean_names()

df |> 
  select(born, death, start, end)
# A tibble: 20,580 × 4
   born       death      start      end       
   <chr>      <chr>      <chr>      <chr>     
 1 05/16/1903 01/23/1953 01/03/1945 01/03/1953
 2 01/08/1899 10/27/1986 01/03/1945 01/03/1947
 3 08/20/1892 11/19/1984 01/03/1945 01/03/1979
 4 01/05/1891 01/05/1969 01/03/1945 01/03/1953
 5 10/05/1898 01/19/1973 01/03/1945 01/02/1949
 6 06/15/1898 04/14/1986 02/04/1946 04/17/1948
 7 01/27/1897 07/26/1978 01/03/1945 01/03/1963
 8 10/23/1895 11/11/1975 01/03/1941 06/30/1945
 9 03/22/1904 02/09/1981 01/03/1945 01/03/1953
10 10/11/1890 01/14/1958 01/03/1945 01/14/1958
# ℹ 20,570 more rows

We’ll use the lubridate package to sort these out.

Lubridate has a wide range of functions to handle dates, times, and durations.

Cleaning up congress

library(lubridate)

date_recodes <- c("born", "death", "start", "end")
df <- df |> 
    mutate(across(any_of(date_recodes), mdy), 
           congress = as.integer(congress) + 78)

df 
# A tibble: 20,580 × 26
   congress last      first   middle suffix nickname born       death      sex  
      <dbl> <chr>     <chr>   <chr>  <chr>  <chr>    <date>     <date>     <chr>
 1       79 Abernethy Thomas  Gerst… <NA>   <NA>     1903-05-16 1953-01-23 M    
 2       79 Adams     Sherman <NA>   <NA>   <NA>     1899-01-08 1986-10-27 M    
 3       79 Aiken     George  David  <NA>   <NA>     1892-08-20 1984-11-19 M    
 4       79 Allen     Asa     Leona… <NA>   <NA>     1891-01-05 1969-01-05 M    
 5       79 Allen     Leo     Elwood <NA>   <NA>     1898-10-05 1973-01-19 M    
 6       79 Almond    J.      Linds… Jr.    <NA>     1898-06-15 1986-04-14 M    
 7       79 Andersen  Herman  Carl   <NA>   <NA>     1897-01-27 1978-07-26 M    
 8       79 Anderson  Clinton Presba <NA>   <NA>     1895-10-23 1975-11-11 M    
 9       79 Anderson  John    Zuing… <NA>   <NA>     1904-03-22 1981-02-09 M    
10       79 Andresen  August  Herman <NA>   <NA>     1890-10-11 1958-01-14 M    
# ℹ 20,570 more rows
# ℹ 17 more variables: position <chr>, party <chr>, state <chr>,
#   district <chr>, start <date>, end <date>, religion <chr>, race <chr>,
#   educational_attainment <chr>, job_type1 <chr>, job_type2 <chr>,
#   job_type3 <chr>, job_type4 <chr>, job_type5 <chr>, mil1 <chr>, mil2 <chr>,
#   mil3 <chr>

Cleaning up congress

sessions <- tibble(congress = 79:116,
                   start_year = seq(1945, 2019, by = 2),
                   end_year = seq(1947, 2021, by = 2)) |> 
  mutate(start_year = ymd(paste(start_year, "01", "03", sep = "-")), 
         end_year = ymd(paste(end_year, "01", "03", sep = "-")))


sessions
# A tibble: 38 × 3
   congress start_year end_year  
      <int> <date>     <date>    
 1       79 1945-01-03 1947-01-03
 2       80 1947-01-03 1949-01-03
 3       81 1949-01-03 1951-01-03
 4       82 1951-01-03 1953-01-03
 5       83 1953-01-03 1955-01-03
 6       84 1955-01-03 1957-01-03
 7       85 1957-01-03 1959-01-03
 8       86 1959-01-03 1961-01-03
 9       87 1961-01-03 1963-01-03
10       88 1963-01-03 1965-01-03
# ℹ 28 more rows

We’re going to join these tables

The big table:

df |> 
  select(congress, last, born)
# A tibble: 20,580 × 3
   congress last      born      
      <dbl> <chr>     <date>    
 1       79 Abernethy 1903-05-16
 2       79 Adams     1899-01-08
 3       79 Aiken     1892-08-20
 4       79 Allen     1891-01-05
 5       79 Allen     1898-10-05
 6       79 Almond    1898-06-15
 7       79 Andersen  1897-01-27
 8       79 Anderson  1895-10-23
 9       79 Anderson  1904-03-22
10       79 Andresen  1890-10-11
# ℹ 20,570 more rows

The smaller table

sessions
# A tibble: 38 × 3
   congress start_year end_year  
      <int> <date>     <date>    
 1       79 1945-01-03 1947-01-03
 2       80 1947-01-03 1949-01-03
 3       81 1949-01-03 1951-01-03
 4       82 1951-01-03 1953-01-03
 5       83 1953-01-03 1955-01-03
 6       84 1955-01-03 1957-01-03
 7       85 1957-01-03 1959-01-03
 8       86 1959-01-03 1961-01-03
 9       87 1961-01-03 1963-01-03
10       88 1963-01-03 1965-01-03
# ℹ 28 more rows

We’re going to join these tables

We will use left_join() which is what you want most of the time when you are looking to merge a smaller table with additional information into a larger main one.

df <- left_join(df, sessions) |> 
  relocate(start_year:end_year, .after = congress)  
Joining with `by = join_by(congress)`
df 
# A tibble: 20,580 × 28
   congress start_year end_year   last   first middle suffix nickname born      
      <dbl> <date>     <date>     <chr>  <chr> <chr>  <chr>  <chr>    <date>    
 1       79 1945-01-03 1947-01-03 Abern… Thom… Gerst… <NA>   <NA>     1903-05-16
 2       79 1945-01-03 1947-01-03 Adams  Sher… <NA>   <NA>   <NA>     1899-01-08
 3       79 1945-01-03 1947-01-03 Aiken  Geor… David  <NA>   <NA>     1892-08-20
 4       79 1945-01-03 1947-01-03 Allen  Asa   Leona… <NA>   <NA>     1891-01-05
 5       79 1945-01-03 1947-01-03 Allen  Leo   Elwood <NA>   <NA>     1898-10-05
 6       79 1945-01-03 1947-01-03 Almond J.    Linds… Jr.    <NA>     1898-06-15
 7       79 1945-01-03 1947-01-03 Ander… Herm… Carl   <NA>   <NA>     1897-01-27
 8       79 1945-01-03 1947-01-03 Ander… Clin… Presba <NA>   <NA>     1895-10-23
 9       79 1945-01-03 1947-01-03 Ander… John  Zuing… <NA>   <NA>     1904-03-22
10       79 1945-01-03 1947-01-03 Andre… Augu… Herman <NA>   <NA>     1890-10-11
# ℹ 20,570 more rows
# ℹ 19 more variables: death <date>, sex <chr>, position <chr>, party <chr>,
#   state <chr>, district <chr>, start <date>, end <date>, religion <chr>,
#   race <chr>, educational_attainment <chr>, job_type1 <chr>, job_type2 <chr>,
#   job_type3 <chr>, job_type4 <chr>, job_type5 <chr>, mil1 <chr>, mil2 <chr>,
#   mil3 <chr>

Table joins

Left join, left_join()

All rows from x, and all columns from x and y. Rows in x with no match in y will have NA values in the new columns.

Left join (contd), left_join()

If there are multiple matches between x and y, all combinations of the matches are returned.

Inner join, inner_join()

All rows from x where there are matching values in y, and all columns from x and y.

Full join, full_join()

All rows and all columns from both x and y. Where there are not matching values, returns NA for the one missing.

Semi join, semi_join()

All rows from x where there are matching values in y, keeping just columns from x.

Anti join, anti_join()

All rows from x where there are not matching values in y, keeping just columns from x.

Left join, left_join()

Most of the time you will be looking to make a left_join()

More on Missing Data

Never test for missingness with ==

The result of almost any operation involving a missing/unknown value will be missing/unknown.

df <- tribble(
  ~subject, ~age,
  "A", 20,
  "B", 25,
  "C", NA,
  "D", 34
)

df
# A tibble: 4 × 2
  subject   age
  <chr>   <dbl>
1 A          20
2 B          25
3 C          NA
4 D          34

Never test for missingness with ==

The result of almost any operation involving a missing/unknown value will be missing/unknown.

# OK
df |> 
  filter(age == 25)
# A tibble: 1 × 2
  subject   age
  <chr>   <dbl>
1 B          25

Never test for missingness with ==

The result of almost any operation involving a missing/unknown value will be missing/unknown.

# Nope
df |> 
  filter(age == NA)
# A tibble: 0 × 2
# ℹ 2 variables: subject <chr>, age <dbl>

Never test for missingness with ==

The result of almost any operation involving a missing/unknown value will be missing/unknown.

# E.g.
23 == NA
[1] NA

Never test for missingness with ==

Always use is.na() instead

# Yes
df |> 
  filter(is.na(age))
# A tibble: 1 × 2
  subject   age
  <chr>   <dbl>
1 C          NA

A quick plug for naniar and visdat

library(naniar)
library(visdat)

organdata
# A tibble: 238 × 21
   country   year       donors   pop pop_dens   gdp gdp_lag health health_lag
   <chr>     <date>      <dbl> <int>    <dbl> <int>   <int>  <dbl>      <dbl>
 1 Australia NA          NA    17065    0.220 16774   16591   1300       1224
 2 Australia 1991-01-01  12.1  17284    0.223 17171   16774   1379       1300
 3 Australia 1992-01-01  12.4  17495    0.226 17914   17171   1455       1379
 4 Australia 1993-01-01  12.5  17667    0.228 18883   17914   1540       1455
 5 Australia 1994-01-01  10.2  17855    0.231 19849   18883   1626       1540
 6 Australia 1995-01-01  10.2  18072    0.233 21079   19849   1737       1626
 7 Australia 1996-01-01  10.6  18311    0.237 21923   21079   1846       1737
 8 Australia 1997-01-01  10.3  18518    0.239 22961   21923   1948       1846
 9 Australia 1998-01-01  10.5  18711    0.242 24148   22961   2077       1948
10 Australia 1999-01-01   8.67 18926    0.244 25445   24148   2231       2077
# ℹ 228 more rows
# ℹ 12 more variables: pubhealth <dbl>, roads <dbl>, cerebvas <int>,
#   assault <int>, external <int>, txp_pop <dbl>, world <chr>, opt <chr>,
#   consent_law <chr>, consent_practice <chr>, consistent <chr>, ccode <chr>

A quick plug for naniar and visdat

gg_miss_var(organdata)

A quick plug for naniar and visdat

vis_dat(organdata)

A quick plug for naniar and visdat

miss_var_summary(organdata)
# A tibble: 21 × 3
   variable  n_miss pct_miss
   <chr>      <int>    <num>
 1 year          34    14.3 
 2 donors        34    14.3 
 3 opt           28    11.8 
 4 pubhealth     21     8.82
 5 pop           17     7.14
 6 pop_dens      17     7.14
 7 gdp           17     7.14
 8 roads         17     7.14
 9 cerebvas      17     7.14
10 assault       17     7.14
# ℹ 11 more rows

A quick plug for naniar and visdat

miss_case_summary(organdata)
# A tibble: 238 × 3
    case n_miss pct_miss
   <int>  <int>    <dbl>
 1    84     12     57.1
 2   182     12     57.1
 3   210     12     57.1
 4    14     11     52.4
 5    28     11     52.4
 6    42     11     52.4
 7    56     11     52.4
 8    70     11     52.4
 9    98     11     52.4
10   112     11     52.4
# ℹ 228 more rows

A quick plug for naniar and visdat

organdata |>
  select(consent_law, year, pubhealth, roads) |>
  group_by(consent_law) |>
  miss_var_summary()
# A tibble: 6 × 4
# Groups:   consent_law [2]
  consent_law variable  n_miss pct_miss
  <chr>       <chr>      <int>    <num>
1 Informed    year          16    14.3 
2 Informed    pubhealth      8     7.14
3 Informed    roads          8     7.14
4 Presumed    year          18    14.3 
5 Presumed    pubhealth     13    10.3 
6 Presumed    roads          9     7.14

A quick plug for naniar and visdat

vis_miss(organdata)

A quick plug for naniar and visdat

library(dwcongress)
gg_miss_upset(congress)

A quick plug for naniar and visdat

vis_miss(organdata, cluster = TRUE)

A quick plug for naniar and visdat

gg_miss_upset(organdata)

Example: Upset Plots

Upset plots and a bit of wrangling

:scale 35%

Upset plots and a bit of wrangling

symptoms <- c("Anosmia", "Cough", "Fatigue", 
              "Diarrhea", "Breath", "Fever")
names(symptoms) <- symptoms
symptoms
   Anosmia      Cough    Fatigue   Diarrhea     Breath      Fever 
 "Anosmia"    "Cough"  "Fatigue" "Diarrhea"   "Breath"    "Fever" 

Upset plots and a bit of wrangling

# An Excel file!
dat <- readxl::read_xlsx(here("files", "examples", "symptoms.xlsx")) 
dat |> print(n = nrow(dat))
# A tibble: 32 × 2
   combination                                 count
   <chr>                                       <dbl>
 1 Anosmia                                       140
 2 Cough                                          57
 3 Fatigue                                       198
 4 Diarrhea                                       12
 5 Breath                                          5
 6 Fever                                          11
 7 Cough&Fatigue                                 179
 8 Fatigue&Fever                                  28
 9 Breath&Fatigue                                 10
10 Diarrhea&Fatigue                               43
11 Anosmia&Fatigue                               281
12 Breath&Cough                                    1
13 Anosmia&Diarrhea&Fatigue                       64
14 Breath&Cough&Fatigue                           22
15 Anosmia&Cough&Fatigue                         259
16 Anosmia&Fever&Fatigue                          46
17 Cough&Fever&Fatigue                            54
18 Cough&Diarrhea                                  7
19 Cough&Diarrhea&Fatigue                         31
20 Anosmia&Breath&Cough&Fatigue                   26
21 Anosmia&Cough&Fatigue&Fever                    69
22 Anosmia&Breath&Cough&Diarrhea&Fatigue          18
23 Anosmia&Breath&Cough&Fatigue&Fever             17
24 Breath&Cough&Fatigue&Fever                     11
25 Breath&Cough&Diarrhea&Fatigue                   7
26 Breath&Cough&Diarrhea&Fatigue&Fever             8
27 Diarrhea&Fatigue&Fever                         12
28 Cough&Diarrhea&Fatigue&Fever                   17
29 Anosmia&Diarrhea&Fatigue&Fever                 17
30 Anosmia&Diarrhea&Cough&Fatigue                 41
31 Anosmia&Breath&Cough&Diarrhea&Fatigue&Fever    23
32 Anosmia&Cough&Diarrhea&Fatigue&Fever           50

Upset plots and a bit of wrangling

subsets <- dat |> 
  pull(combination)

## Check if each subset mentions each symptom or not
symptom_mat <- map(subsets, \(x) str_detect(x, symptoms)) |> 
  set_names(nm = subsets) |> 
  map(\(x) set_names(x, nm = symptoms)) |> 
  bind_rows(.id = "subset") |> 
  left_join(dat, join_by(subset == combination)) 

Upset plots and a bit of wrangling

Now we have a table we can do something with.

symptom_mat |> print(n = nrow(symptom_mat))
# A tibble: 32 × 8
   subset                      Anosmia Cough Fatigue Diarrhea Breath Fever count
   <chr>                       <lgl>   <lgl> <lgl>   <lgl>    <lgl>  <lgl> <dbl>
 1 Anosmia                     TRUE    FALSE FALSE   FALSE    FALSE  FALSE   140
 2 Cough                       FALSE   TRUE  FALSE   FALSE    FALSE  FALSE    57
 3 Fatigue                     FALSE   FALSE TRUE    FALSE    FALSE  FALSE   198
 4 Diarrhea                    FALSE   FALSE FALSE   TRUE     FALSE  FALSE    12
 5 Breath                      FALSE   FALSE FALSE   FALSE    TRUE   FALSE     5
 6 Fever                       FALSE   FALSE FALSE   FALSE    FALSE  TRUE     11
 7 Cough&Fatigue               FALSE   TRUE  TRUE    FALSE    FALSE  FALSE   179
 8 Fatigue&Fever               FALSE   FALSE TRUE    FALSE    FALSE  TRUE     28
 9 Breath&Fatigue              FALSE   FALSE TRUE    FALSE    TRUE   FALSE    10
10 Diarrhea&Fatigue            FALSE   FALSE TRUE    TRUE     FALSE  FALSE    43
11 Anosmia&Fatigue             TRUE    FALSE TRUE    FALSE    FALSE  FALSE   281
12 Breath&Cough                FALSE   TRUE  FALSE   FALSE    TRUE   FALSE     1
13 Anosmia&Diarrhea&Fatigue    TRUE    FALSE TRUE    TRUE     FALSE  FALSE    64
14 Breath&Cough&Fatigue        FALSE   TRUE  TRUE    FALSE    TRUE   FALSE    22
15 Anosmia&Cough&Fatigue       TRUE    TRUE  TRUE    FALSE    FALSE  FALSE   259
16 Anosmia&Fever&Fatigue       TRUE    FALSE TRUE    FALSE    FALSE  TRUE     46
17 Cough&Fever&Fatigue         FALSE   TRUE  TRUE    FALSE    FALSE  TRUE     54
18 Cough&Diarrhea              FALSE   TRUE  FALSE   TRUE     FALSE  FALSE     7
19 Cough&Diarrhea&Fatigue      FALSE   TRUE  TRUE    TRUE     FALSE  FALSE    31
20 Anosmia&Breath&Cough&Fatig… TRUE    TRUE  TRUE    FALSE    TRUE   FALSE    26
21 Anosmia&Cough&Fatigue&Fever TRUE    TRUE  TRUE    FALSE    FALSE  TRUE     69
22 Anosmia&Breath&Cough&Diarr… TRUE    TRUE  TRUE    TRUE     TRUE   FALSE    18
23 Anosmia&Breath&Cough&Fatig… TRUE    TRUE  TRUE    FALSE    TRUE   TRUE     17
24 Breath&Cough&Fatigue&Fever  FALSE   TRUE  TRUE    FALSE    TRUE   TRUE     11
25 Breath&Cough&Diarrhea&Fati… FALSE   TRUE  TRUE    TRUE     TRUE   FALSE     7
26 Breath&Cough&Diarrhea&Fati… FALSE   TRUE  TRUE    TRUE     TRUE   TRUE      8
27 Diarrhea&Fatigue&Fever      FALSE   FALSE TRUE    TRUE     FALSE  TRUE     12
28 Cough&Diarrhea&Fatigue&Fev… FALSE   TRUE  TRUE    TRUE     FALSE  TRUE     17
29 Anosmia&Diarrhea&Fatigue&F… TRUE    FALSE TRUE    TRUE     FALSE  TRUE     17
30 Anosmia&Diarrhea&Cough&Fat… TRUE    TRUE  TRUE    TRUE     FALSE  FALSE    41
31 Anosmia&Breath&Cough&Diarr… TRUE    TRUE  TRUE    TRUE     TRUE   TRUE     23
32 Anosmia&Cough&Diarrhea&Fat… TRUE    TRUE  TRUE    TRUE     FALSE  TRUE     50

Upset plots and a bit of wrangling

Uncounting tables:

indvs <- symptom_mat |>
    uncount(count) 

indvs
# A tibble: 1,764 × 7
   subset  Anosmia Cough Fatigue Diarrhea Breath Fever
   <chr>   <lgl>   <lgl> <lgl>   <lgl>    <lgl>  <lgl>
 1 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 2 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 3 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 4 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 5 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 6 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 7 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 8 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
 9 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
10 Anosmia TRUE    FALSE FALSE   FALSE    FALSE  FALSE
# ℹ 1,754 more rows

Now we’ve reconstructed the individual-level observations.

Upset plots and a bit of wrangling

# devtools::install_github("krassowski/complex-upset")

library(ComplexUpset)

upset(data = indvs, intersect = symptoms, 
      name="Symptom Groupings by Frequency. Total pool is 1,764 individuals.", 
      min_size = 0,
      width_ratio = 0.125) +
    labs(title = "Co-Occurence of COVID-19 Symptoms",
         caption = "Data: covid.joinzoe.com/us | Graph: @kjhealy")

Upset plots and a bit of wrangling

Wrangling Models

This is not a statistics seminar!

  • I’ll just give you an example of the sort of thing that many other modeling packages implement for all kinds of modeling techniques.
  • Again, the principle is tidy incorporation of models and their output.

Tidy regression output with broom

library(broom)
library(gapminder)
out <- lm(formula = lifeExp ~ gdpPercap + pop + continent,
          data = gapminder)

Tidy regression output with broom

We can’t do anything with this, programatically.

summary(out)

Call:
lm(formula = lifeExp ~ gdpPercap + pop + continent, data = gapminder)

Residuals:
    Min      1Q  Median      3Q     Max 
-49.161  -4.486   0.297   5.110  25.175 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       4.781e+01  3.395e-01 140.819  < 2e-16 ***
gdpPercap         4.495e-04  2.346e-05  19.158  < 2e-16 ***
pop               6.570e-09  1.975e-09   3.326 0.000901 ***
continentAmericas 1.348e+01  6.000e-01  22.458  < 2e-16 ***
continentAsia     8.193e+00  5.712e-01  14.342  < 2e-16 ***
continentEurope   1.747e+01  6.246e-01  27.973  < 2e-16 ***
continentOceania  1.808e+01  1.782e+00  10.146  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.365 on 1697 degrees of freedom
Multiple R-squared:  0.5821,    Adjusted R-squared:  0.5806 
F-statistic: 393.9 on 6 and 1697 DF,  p-value: < 2.2e-16

Tidy regression output with broom

library(broom)
tidy(out)
# A tibble: 7 × 5
  term              estimate     std.error statistic   p.value
  <chr>                <dbl>         <dbl>     <dbl>     <dbl>
1 (Intercept)        4.78e+1 0.340            141.   0        
2 gdpPercap          4.50e-4 0.0000235         19.2  3.24e- 74
3 pop                6.57e-9 0.00000000198      3.33 9.01e-  4
4 continentAmericas  1.35e+1 0.600             22.5  5.19e- 98
5 continentAsia      8.19e+0 0.571             14.3  4.06e- 44
6 continentEurope    1.75e+1 0.625             28.0  6.34e-142
7 continentOceania   1.81e+1 1.78              10.1  1.59e- 23

That’s a lot nicer. Now it’s just a tibble. We know those.

Tidy regression output with broom

out_conf <- tidy(out, conf.int = TRUE)
out_conf 
# A tibble: 7 × 7
  term              estimate    std.error statistic   p.value conf.low conf.high
  <chr>                <dbl>        <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
1 (Intercept)        4.78e+1      3.40e-1    141.   0          4.71e+1   4.85e+1
2 gdpPercap          4.50e-4      2.35e-5     19.2  3.24e- 74  4.03e-4   4.96e-4
3 pop                6.57e-9      1.98e-9      3.33 9.01e-  4  2.70e-9   1.04e-8
4 continentAmericas  1.35e+1      6.00e-1     22.5  5.19e- 98  1.23e+1   1.47e+1
5 continentAsia      8.19e+0      5.71e-1     14.3  4.06e- 44  7.07e+0   9.31e+0
6 continentEurope    1.75e+1      6.25e-1     28.0  6.34e-142  1.62e+1   1.87e+1
7 continentOceania   1.81e+1      1.78e+0     10.1  1.59e- 23  1.46e+1   2.16e+1

Tidy regression output with broom

out_conf |>
    filter(term %nin% "(Intercept)") |>
    mutate(nicelabs = prefix_strip(term, "continent")) |>
    select(nicelabs, everything())
# A tibble: 6 × 8
  nicelabs  term       estimate std.error statistic   p.value conf.low conf.high
  <chr>     <chr>         <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
1 gdpPercap gdpPercap   4.50e-4   2.35e-5     19.2  3.24e- 74  4.03e-4   4.96e-4
2 Pop       pop         6.57e-9   1.98e-9      3.33 9.01e-  4  2.70e-9   1.04e-8
3 Americas  continent…  1.35e+1   6.00e-1     22.5  5.19e- 98  1.23e+1   1.47e+1
4 Asia      continent…  8.19e+0   5.71e-1     14.3  4.06e- 44  7.07e+0   9.31e+0
5 Europe    continent…  1.75e+1   6.25e-1     28.0  6.34e-142  1.62e+1   1.87e+1
6 Oceania   continent…  1.81e+1   1.78e+0     10.1  1.59e- 23  1.46e+1   2.16e+1

Grouped analysis and list columns

eu77 <- gapminder |> filter(continent == "Europe", year == 1977)
fit <- lm(lifeExp ~ log(gdpPercap), data = eu77)
summary(fit)

Call:
lm(formula = lifeExp ~ log(gdpPercap), data = eu77)

Residuals:
    Min      1Q  Median      3Q     Max 
-7.4956 -1.0306  0.0935  1.1755  3.7125 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      29.489      7.161   4.118 0.000306 ***
log(gdpPercap)    4.488      0.756   5.936 2.17e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.114 on 28 degrees of freedom
Multiple R-squared:  0.5572,    Adjusted R-squared:  0.5414 
F-statistic: 35.24 on 1 and 28 DF,  p-value: 2.173e-06

Grouped analysis and list columns

out_le <- gapminder |>
    group_by(continent, year) |>
    nest()

out_le
# A tibble: 60 × 3
# Groups:   continent, year [60]
   continent  year data             
   <fct>     <int> <list>           
 1 Asia       1952 <tibble [33 × 4]>
 2 Asia       1957 <tibble [33 × 4]>
 3 Asia       1962 <tibble [33 × 4]>
 4 Asia       1967 <tibble [33 × 4]>
 5 Asia       1972 <tibble [33 × 4]>
 6 Asia       1977 <tibble [33 × 4]>
 7 Asia       1982 <tibble [33 × 4]>
 8 Asia       1987 <tibble [33 × 4]>
 9 Asia       1992 <tibble [33 × 4]>
10 Asia       1997 <tibble [33 × 4]>
# ℹ 50 more rows

Think of nesting as a kind of “super-grouping”. Look in the object inspector.

Grouped analysis and list columns

It’s still in there.

out_le |> filter(continent == "Europe" & year == 1977) |> 
    unnest(cols = c(data))
# A tibble: 30 × 6
# Groups:   continent, year [1]
   continent  year country                lifeExp      pop gdpPercap
   <fct>     <int> <fct>                    <dbl>    <int>     <dbl>
 1 Europe     1977 Albania                   68.9  2509048     3533.
 2 Europe     1977 Austria                   72.2  7568430    19749.
 3 Europe     1977 Belgium                   72.8  9821800    19118.
 4 Europe     1977 Bosnia and Herzegovina    69.9  4086000     3528.
 5 Europe     1977 Bulgaria                  70.8  8797022     7612.
 6 Europe     1977 Croatia                   70.6  4318673    11305.
 7 Europe     1977 Czech Republic            70.7 10161915    14800.
 8 Europe     1977 Denmark                   74.7  5088419    20423.
 9 Europe     1977 Finland                   72.5  4738902    15605.
10 Europe     1977 France                    73.8 53165019    18293.
# ℹ 20 more rows

Grouped analysis and list columns

Here we map() a custom function to every row in the data column.

fit_ols <- function(df) {
    lm(lifeExp ~ log(gdpPercap), data = df)
}

out_le <- gapminder |>
    group_by(continent, year) |>
    nest() |> 
    mutate(model = map(data, fit_ols)) 

Grouped analysis and list columns

out_le
# A tibble: 60 × 4
# Groups:   continent, year [60]
   continent  year data              model 
   <fct>     <int> <list>            <list>
 1 Asia       1952 <tibble [33 × 4]> <lm>  
 2 Asia       1957 <tibble [33 × 4]> <lm>  
 3 Asia       1962 <tibble [33 × 4]> <lm>  
 4 Asia       1967 <tibble [33 × 4]> <lm>  
 5 Asia       1972 <tibble [33 × 4]> <lm>  
 6 Asia       1977 <tibble [33 × 4]> <lm>  
 7 Asia       1982 <tibble [33 × 4]> <lm>  
 8 Asia       1987 <tibble [33 × 4]> <lm>  
 9 Asia       1992 <tibble [33 × 4]> <lm>  
10 Asia       1997 <tibble [33 × 4]> <lm>  
# ℹ 50 more rows

Grouped analysis and list columns

We can tidy the nested models, too.

fit_ols <- function(df) {
    lm(lifeExp ~ log(gdpPercap), data = df)
}

out_tidy <- gapminder |>
    group_by(continent, year) |>
    nest() |> 
    mutate(model = map(data, fit_ols),
           tidied = map(model, tidy)) |>
    unnest(cols = c(tidied)) |>
    filter(term %nin% "(Intercept)" &
           continent %nin% "Oceania")

Grouped analysis and list columns

out_tidy
# A tibble: 48 × 9
# Groups:   continent, year [48]
   continent  year data     model  term     estimate std.error statistic p.value
   <fct>     <int> <list>   <list> <chr>       <dbl>     <dbl>     <dbl>   <dbl>
 1 Asia       1952 <tibble> <lm>   log(gdp…     4.16     1.25       3.33 2.28e-3
 2 Asia       1957 <tibble> <lm>   log(gdp…     4.17     1.28       3.26 2.71e-3
 3 Asia       1962 <tibble> <lm>   log(gdp…     4.59     1.24       3.72 7.94e-4
 4 Asia       1967 <tibble> <lm>   log(gdp…     4.50     1.15       3.90 4.77e-4
 5 Asia       1972 <tibble> <lm>   log(gdp…     4.44     1.01       4.41 1.16e-4
 6 Asia       1977 <tibble> <lm>   log(gdp…     4.87     1.03       4.75 4.42e-5
 7 Asia       1982 <tibble> <lm>   log(gdp…     4.78     0.852      5.61 3.77e-6
 8 Asia       1987 <tibble> <lm>   log(gdp…     5.17     0.727      7.12 5.31e-8
 9 Asia       1992 <tibble> <lm>   log(gdp…     5.09     0.649      7.84 7.60e-9
10 Asia       1997 <tibble> <lm>   log(gdp…     5.11     0.628      8.15 3.35e-9
# ℹ 38 more rows

Grouped analysis and list columns

out_tidy |> 
    ungroup() |>
    sample_n(5)
# A tibble: 5 × 9
  continent  year data     model  term     estimate std.error statistic  p.value
  <fct>     <int> <list>   <list> <chr>       <dbl>     <dbl>     <dbl>    <dbl>
1 Europe     1952 <tibble> <lm>   log(gdp…     9.00     0.987      9.12 7.04e-10
2 Americas   1967 <tibble> <lm>   log(gdp…     8.72     1.98       4.41 2.05e- 4
3 Europe     1977 <tibble> <lm>   log(gdp…     4.49     0.756      5.94 2.17e- 6
4 Europe     2002 <tibble> <lm>   log(gdp…     3.74     0.445      8.40 3.91e- 9
5 Europe     1997 <tibble> <lm>   log(gdp…     3.76     0.507      7.42 4.45e- 8

Midwest PCA Example

Midwest data

midwest
# A tibble: 437 × 28
     PID county  state  area poptotal popdensity popwhite popblack popamerindian
   <int> <chr>   <chr> <dbl>    <int>      <dbl>    <int>    <int>         <int>
 1   561 ADAMS   IL    0.052    66090      1271.    63917     1702            98
 2   562 ALEXAN… IL    0.014    10626       759      7054     3496            19
 3   563 BOND    IL    0.022    14991       681.    14477      429            35
 4   564 BOONE   IL    0.017    30806      1812.    29344      127            46
 5   565 BROWN   IL    0.018     5836       324.     5264      547            14
 6   566 BUREAU  IL    0.05     35688       714.    35157       50            65
 7   567 CALHOUN IL    0.017     5322       313.     5298        1             8
 8   568 CARROLL IL    0.027    16805       622.    16519      111            30
 9   569 CASS    IL    0.024    13437       560.    13384       16             8
10   570 CHAMPA… IL    0.058   173025      2983.   146506    16559           331
# ℹ 427 more rows
# ℹ 19 more variables: popasian <int>, popother <int>, percwhite <dbl>,
#   percblack <dbl>, percamerindan <dbl>, percasian <dbl>, percother <dbl>,
#   popadults <int>, perchsd <dbl>, percollege <dbl>, percprof <dbl>,
#   poppovertyknown <int>, percpovertyknown <dbl>, percbelowpoverty <dbl>,
#   percchildbelowpovert <dbl>, percadultpoverty <dbl>,
#   percelderlypoverty <dbl>, inmetro <int>, category <chr>

Extract numeric vars

mw_pca <- midwest |>
    group_by(state) |>
    select(where(is.numeric)) |>
    select(-PID)
    
mw_pca
# A tibble: 437 × 25
# Groups:   state [5]
   state  area poptotal popdensity popwhite popblack popamerindian popasian
   <chr> <dbl>    <int>      <dbl>    <int>    <int>         <int>    <int>
 1 IL    0.052    66090      1271.    63917     1702            98      249
 2 IL    0.014    10626       759      7054     3496            19       48
 3 IL    0.022    14991       681.    14477      429            35       16
 4 IL    0.017    30806      1812.    29344      127            46      150
 5 IL    0.018     5836       324.     5264      547            14        5
 6 IL    0.05     35688       714.    35157       50            65      195
 7 IL    0.017     5322       313.     5298        1             8       15
 8 IL    0.027    16805       622.    16519      111            30       61
 9 IL    0.024    13437       560.    13384       16             8       23
10 IL    0.058   173025      2983.   146506    16559           331     8033
# ℹ 427 more rows
# ℹ 17 more variables: popother <int>, percwhite <dbl>, percblack <dbl>,
#   percamerindan <dbl>, percasian <dbl>, percother <dbl>, popadults <int>,
#   perchsd <dbl>, percollege <dbl>, percprof <dbl>, poppovertyknown <int>,
#   percpovertyknown <dbl>, percbelowpoverty <dbl>, percchildbelowpovert <dbl>,
#   percadultpoverty <dbl>, percelderlypoverty <dbl>, inmetro <int>

PCA Helper function

We could do this anonymously too.

do_pca <- function(df){
  prcomp(df,
         center = TRUE, scale = TRUE)
}

PCA on the whole dataset

out_pca <- mw_pca |>
    ungroup() |>
    select(-state) |>
    do_pca()

out_pca
Standard deviations (1, .., p=24):
 [1] 3.10e+00 2.21e+00 1.65e+00 1.19e+00 1.12e+00 8.98e-01 8.86e-01 8.19e-01
 [9] 6.92e-01 5.65e-01 5.44e-01 4.85e-01 3.80e-01 3.58e-01 3.09e-01 2.50e-01
[17] 2.09e-01 1.92e-01 9.65e-02 3.47e-02 1.33e-02 3.86e-03 2.89e-09 9.98e-16

Rotation (n x k) = (24 x 24):
                          PC1     PC2      PC3     PC4       PC5      PC6
area                 -0.02619  0.0150 -0.10362  0.2508 -0.626804  0.48689
poptotal             -0.31299  0.0515  0.11077  0.0544  0.002497  0.04058
popdensity           -0.29205  0.0236  0.04558 -0.1042  0.139053  0.15186
popwhite             -0.31410  0.0238  0.08117  0.0278  0.016318  0.07259
popblack             -0.28773  0.1074  0.14902  0.0598  0.006193  0.04880
popamerindian        -0.26919  0.0916 -0.01213 -0.1236 -0.196022  0.14136
popasian             -0.28406  0.0578  0.14522  0.2132 -0.083397 -0.16286
popother             -0.25831  0.0807  0.19651  0.2163 -0.110491 -0.26225
percwhite             0.18251 -0.1756  0.25486  0.4371  0.082341  0.07589
percblack            -0.19880  0.1119 -0.15319 -0.2542  0.343979  0.25296
percamerindan        -0.00153  0.1745 -0.18427 -0.4065 -0.522049 -0.28835
percasian            -0.19122 -0.1272 -0.33296  0.2078  0.057549 -0.06347
percother            -0.17367 -0.0506  0.03017 -0.0944 -0.021881 -0.58380
popadults            -0.31212  0.0529  0.11638  0.0545  0.000792  0.04190
perchsd              -0.09422 -0.3559 -0.18125 -0.0433 -0.185756  0.03657
percollege           -0.15307 -0.2554 -0.34484  0.0812 -0.024319  0.08217
percprof             -0.14308 -0.2065 -0.39278  0.1601  0.115989 -0.03980
poppovertyknown      -0.31259  0.0522  0.11422  0.0527  0.001560  0.04174
percpovertyknown      0.01603  0.0074  0.35975 -0.3495 -0.078744  0.25725
percbelowpoverty      0.02186  0.4029 -0.23735  0.0821  0.044412 -0.00326
percchildbelowpovert  0.00948  0.4121 -0.15012 -0.0412  0.051210  0.07182
percadultpoverty      0.01409  0.3590 -0.30902  0.1546  0.035637 -0.03790
percelderlypoverty    0.08536  0.3681  0.00766  0.1855  0.141928  0.08282
inmetro              -0.13767 -0.1924 -0.12507 -0.3310  0.218386  0.15729
                          PC7       PC8     PC9     PC10    PC11    PC12
area                 -0.45357  0.107932  0.1266 -0.09418 -0.1123  0.0431
poptotal              0.04886 -0.028501  0.0155  0.00878  0.0179  0.0150
popdensity            0.06936 -0.066500 -0.1390  0.34249 -0.1779 -0.0595
popwhite              0.05617 -0.000858  0.0127  0.05245 -0.0656  0.0344
popblack              0.01683 -0.122024 -0.0269 -0.00446  0.1794 -0.0630
popamerindian         0.05258 -0.134705 -0.0411  0.44923 -0.1095 -0.3797
popasian              0.12879  0.047243  0.1011 -0.23737  0.0263  0.1368
popother              0.03907  0.052661  0.1772 -0.30565  0.2244  0.0863
percwhite             0.13000  0.159783  0.1321  0.28485  0.0554 -0.0947
percblack            -0.38305 -0.177172 -0.2160 -0.30716  0.1082  0.1591
percamerindan         0.32453 -0.146125  0.0645 -0.12749 -0.1147 -0.0439
percasian             0.11659  0.180479 -0.0714 -0.01768 -0.5930  0.3612
percother            -0.59580  0.390170 -0.0894  0.17667 -0.0671 -0.2075
popadults             0.05210 -0.029834  0.0164  0.00544  0.0206  0.0206
perchsd               0.04100  0.039628 -0.1430  0.02198  0.5422 -0.0818
percollege            0.12256  0.181171 -0.1849 -0.08584  0.1542 -0.2181
percprof              0.19379  0.101079 -0.1270 -0.13267  0.0155 -0.1796
poppovertyknown       0.04962 -0.027370  0.0146  0.00836  0.0192  0.0147
percpovertyknown      0.23760  0.682652 -0.2952 -0.13789 -0.0294  0.0681
percbelowpoverty      0.05392  0.182119  0.0472  0.11013  0.1439  0.0262
percchildbelowpovert -0.00510  0.224482  0.0394  0.19609  0.2277  0.2252
percadultpoverty      0.07611  0.179307  0.0725  0.20097  0.1930  0.0739
percelderlypoverty    0.02486  0.074240 -0.0498 -0.39718 -0.2045 -0.6657
inmetro              -0.00301  0.220252  0.8179 -0.05357 -0.0222 -0.1318
                          PC13     PC14     PC15     PC16     PC17     PC18
area                  1.49e-01  0.04925 -0.04158  0.06918 -0.08005 -0.03174
poptotal              8.09e-02  0.09421 -0.04704 -0.01902  0.22285  0.08703
popdensity            1.51e-01  0.47017  0.07373  0.13787 -0.57401 -0.28223
popwhite              1.03e-01  0.22760  0.15543  0.12548  0.46636  0.07769
popblack              8.92e-02 -0.16452 -0.64727 -0.42151 -0.25573  0.19708
popamerindian        -3.34e-01 -0.55797  0.17430  0.08862  0.04284 -0.03870
popasian             -1.24e-01 -0.01828  0.23649  0.12741 -0.09705 -0.03676
popother             -1.07e-01 -0.20652  0.19229  0.06486 -0.31519 -0.25803
percwhite             1.61e-02  0.00537  0.00696 -0.00619 -0.00690  0.04870
percblack            -9.25e-02 -0.14098  0.06451  0.05433  0.02579 -0.12478
percamerindan         1.25e-01  0.14325 -0.05045 -0.03463 -0.01622  0.04164
percasian            -4.17e-01 -0.01410 -0.17323 -0.11467 -0.05198  0.10725
percother             6.38e-02  0.05381 -0.05133 -0.00728  0.02705  0.04714
popadults             8.47e-02  0.11195 -0.02766 -0.00765  0.22575  0.08734
perchsd              -5.16e-01  0.32791 -0.18139  0.23073 -0.00181  0.09494
percollege            1.65e-01  0.01746  0.41803 -0.64004 -0.00284 -0.07362
percprof              4.73e-01 -0.29347 -0.16077  0.51738 -0.08001  0.13539
poppovertyknown       7.98e-02  0.09550 -0.04780 -0.02371  0.22682  0.08897
percpovertyknown     -8.29e-05 -0.13054 -0.09925  0.04744  0.01969 -0.10975
percbelowpoverty     -2.61e-02  0.04201 -0.05359  0.00659  0.04648 -0.06958
percchildbelowpovert  5.67e-03  0.00225  0.28393  0.03067 -0.23656  0.62012
percadultpoverty      4.30e-03  0.01308 -0.22556 -0.01478  0.21660 -0.54943
percelderlypoverty   -2.38e-01  0.23711 -0.03068  0.03817 -0.02334  0.11150
inmetro              -3.86e-02  0.01112 -0.05590 -0.02538 -0.04174 -0.00287
                          PC19      PC20     PC21      PC22      PC23      PC24
area                  0.008671  0.004681  0.00061  8.37e-04  9.26e-11  4.00e-16
poptotal             -0.076193  0.023054  0.26237 -2.70e-01 -1.53e-08 -8.10e-01
popdensity           -0.005458  0.011704  0.00671  3.68e-03  2.87e-10  6.21e-16
popwhite             -0.140728  0.030297  0.34182 -3.43e-01  2.85e-09  5.44e-01
popblack              0.104823  0.008645  0.11364 -1.40e-01  3.04e-10  2.14e-01
popamerindian         0.021665  0.004648 -0.00781 -2.08e-03 -6.54e-11  2.36e-03
popasian              0.781087  0.034020  0.01827 -1.95e-02  2.09e-10  2.58e-02
popother             -0.554636 -0.010890  0.03550 -2.63e-02  1.25e-09  5.03e-02
percwhite            -0.007309  0.015581 -0.00107 -1.13e-04  7.15e-01 -1.00e-08
percblack             0.034614  0.004477 -0.00140  3.42e-04  5.18e-01 -7.27e-09
percamerindan        -0.019199 -0.026849  0.00482 -2.22e-04  4.58e-01 -6.42e-09
percasian            -0.127336 -0.015781 -0.00556  8.87e-04  6.33e-02 -8.89e-10
percother             0.049001 -0.002061 -0.00432 -6.03e-04  8.45e-02 -1.19e-09
popadults            -0.076871 -0.091715 -0.87903 -1.03e-01 -1.77e-08  8.42e-17
perchsd              -0.015055  0.001811  0.00211 -1.11e-04  2.27e-10  1.13e-16
percollege            0.019522  0.007993 -0.00197 -1.66e-03 -7.27e-11  6.99e-17
percprof             -0.005332 -0.006801 -0.00209  3.81e-03 -1.66e-10 -5.42e-17
poppovertyknown      -0.069062  0.003553  0.13036  8.82e-01  2.86e-08  7.82e-15
percpovertyknown      0.000399  0.000865 -0.00122 -2.70e-03 -2.29e-10  2.72e-16
percbelowpoverty     -0.017411  0.825060 -0.08306  4.75e-03  4.43e-09  8.59e-16
percchildbelowpovert -0.051527 -0.281404  0.03353 -7.31e-04 -8.29e-10 -5.22e-16
percadultpoverty      0.090370 -0.461037  0.04164 -2.95e-03 -2.97e-09 -4.43e-16
percelderlypoverty   -0.036945 -0.121558  0.01264 -1.06e-03 -6.50e-10 -5.46e-17
inmetro               0.032697  0.000802 -0.00267 -5.15e-05 -9.24e-11  8.91e-17

Tidier view

tidy_pca <- tidy(out_pca, matrix = "pcs")

tidy_pca
# A tibble: 24 × 4
      PC std.dev percent cumulative
   <dbl>   <dbl>   <dbl>      <dbl>
 1     1   3.10   0.400       0.400
 2     2   2.21   0.203       0.603
 3     3   1.65   0.113       0.717
 4     4   1.19   0.0593      0.776
 5     5   1.12   0.0524      0.829
 6     6   0.898  0.0336      0.862
 7     7   0.886  0.0327      0.895
 8     8   0.819  0.0280      0.923
 9     9   0.692  0.0200      0.943
10    10   0.565  0.0133      0.956
# ℹ 14 more rows

Using augment()

This puts the original data points back in.

aug_pca <- augment(out_pca, data = mw_pca[,-1])
aug_pca <-  aug_pca |> 
  tibble::add_column(midwest$state, midwest$county, .before = TRUE) |>
  rename(state = `midwest$state`, county = `midwest$county`)

aug_pca
# A tibble: 437 × 51
   state county    .rownames  area poptotal popdensity popwhite popblack
   <chr> <chr>     <chr>     <dbl>    <int>      <dbl>    <int>    <int>
 1 IL    ADAMS     1         0.052    66090      1271.    63917     1702
 2 IL    ALEXANDER 2         0.014    10626       759      7054     3496
 3 IL    BOND      3         0.022    14991       681.    14477      429
 4 IL    BOONE     4         0.017    30806      1812.    29344      127
 5 IL    BROWN     5         0.018     5836       324.     5264      547
 6 IL    BUREAU    6         0.05     35688       714.    35157       50
 7 IL    CALHOUN   7         0.017     5322       313.     5298        1
 8 IL    CARROLL   8         0.027    16805       622.    16519      111
 9 IL    CASS      9         0.024    13437       560.    13384       16
10 IL    CHAMPAIGN 10        0.058   173025      2983.   146506    16559
# ℹ 427 more rows
# ℹ 43 more variables: popamerindian <int>, popasian <int>, popother <int>,
#   percwhite <dbl>, percblack <dbl>, percamerindan <dbl>, percasian <dbl>,
#   percother <dbl>, popadults <int>, perchsd <dbl>, percollege <dbl>,
#   percprof <dbl>, poppovertyknown <int>, percpovertyknown <dbl>,
#   percbelowpoverty <dbl>, percchildbelowpovert <dbl>, percadultpoverty <dbl>,
#   percelderlypoverty <dbl>, inmetro <int>, .fittedPC1 <dbl>, …

Grouped PCA

Let’s do that grouped by State

mw_pca <- mw_pca |>
    group_by(state) |>
    nest()

mw_pca
# A tibble: 5 × 2
# Groups:   state [5]
  state data               
  <chr> <list>             
1 IL    <tibble [102 × 24]>
2 IN    <tibble [92 × 24]> 
3 MI    <tibble [83 × 24]> 
4 OH    <tibble [88 × 24]> 
5 WI    <tibble [72 × 24]> 

Grouped PCA

state_pca <- mw_pca |> 
    mutate(pca = map(data, do_pca))

state_pca
# A tibble: 5 × 3
# Groups:   state [5]
  state data                pca     
  <chr> <list>              <list>  
1 IL    <tibble [102 × 24]> <prcomp>
2 IN    <tibble [92 × 24]>  <prcomp>
3 MI    <tibble [83 × 24]>  <prcomp>
4 OH    <tibble [88 × 24]>  <prcomp>
5 WI    <tibble [72 × 24]>  <prcomp>

Grouped PCA

Alternatively, write a lambda function:

mw_pca |> 
    mutate(pca = map(data, \(x) prcomp(x, center = TRUE, scale = TRUE)))
# A tibble: 5 × 3
# Groups:   state [5]
  state data                pca     
  <chr> <list>              <list>  
1 IL    <tibble [102 × 24]> <prcomp>
2 IN    <tibble [92 × 24]>  <prcomp>
3 MI    <tibble [83 × 24]>  <prcomp>
4 OH    <tibble [88 × 24]>  <prcomp>
5 WI    <tibble [72 × 24]>  <prcomp>

Tidy it

do_tidy <- function(pr){
    broom::tidy(pr, matrix = "pcs")
}

state_pca  <- mw_pca |>
    mutate(pca = map(data, do_pca),
           pcs = map(pca, do_tidy)) 

state_pca
# A tibble: 5 × 4
# Groups:   state [5]
  state data                pca      pcs              
  <chr> <list>              <list>   <list>           
1 IL    <tibble [102 × 24]> <prcomp> <tibble [24 × 4]>
2 IN    <tibble [92 × 24]>  <prcomp> <tibble [24 × 4]>
3 MI    <tibble [83 × 24]>  <prcomp> <tibble [24 × 4]>
4 OH    <tibble [88 × 24]>  <prcomp> <tibble [24 × 4]>
5 WI    <tibble [72 × 24]>  <prcomp> <tibble [24 × 4]>

Tidy it

Or again, write a lambda function

mw_pca |>
    mutate(pca = map(data, \(x) prcomp(x, center = TRUE, scale = TRUE)),
           pcs = map(pca, \(x) tidy(x, matrix = "pcs")))
# A tibble: 5 × 4
# Groups:   state [5]
  state data                pca      pcs              
  <chr> <list>              <list>   <list>           
1 IL    <tibble [102 × 24]> <prcomp> <tibble [24 × 4]>
2 IN    <tibble [92 × 24]>  <prcomp> <tibble [24 × 4]>
3 MI    <tibble [83 × 24]>  <prcomp> <tibble [24 × 4]>
4 OH    <tibble [88 × 24]>  <prcomp> <tibble [24 × 4]>
5 WI    <tibble [72 × 24]>  <prcomp> <tibble [24 × 4]>

Unnest to inspect

mw_pca |>
  mutate(pca = map(data, \(x) prcomp(x, center = TRUE, scale = TRUE)),
           pcs = map(pca, \(x) tidy(x, matrix = "pcs"))) |> 
  unnest(cols = c(pcs)) |>
  ggplot(aes(x = PC, y = percent)) +
  geom_line(linewidth = 1.1) +
  facet_wrap(~ state, nrow = 1) +
  labs(x = "Principal Component",
       y = "Variance Explained") 

And finally, augment()

do_aug <- function(pr){
    broom::augment(pr)
}


state_pca  <- mw_pca |>
    mutate(pca = map(data, do_pca),
           pcs = map(pca, do_tidy),
           fitted = map(pca, do_aug)) 

state_pca
# A tibble: 5 × 5
# Groups:   state [5]
  state data                pca      pcs               fitted             
  <chr> <list>              <list>   <list>            <list>             
1 IL    <tibble [102 × 24]> <prcomp> <tibble [24 × 4]> <tibble [102 × 25]>
2 IN    <tibble [92 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [92 × 25]> 
3 MI    <tibble [83 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [83 × 25]> 
4 OH    <tibble [88 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [88 × 25]> 
5 WI    <tibble [72 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [72 × 25]> 

… or a lambda

mw_pca |>
  mutate(pca = map(data, \(x) prcomp(x, center = TRUE, scale = TRUE)),
         pcs = map(pca, \(x) tidy(x, matrix = "pcs")), 
         fitted = map(pca, \(x) augment(x)))
# A tibble: 5 × 5
# Groups:   state [5]
  state data                pca      pcs               fitted             
  <chr> <list>              <list>   <list>            <list>             
1 IL    <tibble [102 × 24]> <prcomp> <tibble [24 × 4]> <tibble [102 × 25]>
2 IN    <tibble [92 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [92 × 25]> 
3 MI    <tibble [83 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [83 × 25]> 
4 OH    <tibble [88 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [88 × 25]> 
5 WI    <tibble [72 × 24]>  <prcomp> <tibble [24 × 4]> <tibble [72 × 25]> 

In one breath

out <- midwest |>
    group_by(state) |>
    select_if(is.numeric) |>
    select(-PID) |>
    nest() |>
    mutate(pca = map(data, \(x) prcomp(x, center = TRUE, scale = TRUE)),
           pcs = map(pca, \(x) tidy(x, matrix = "pcs")), 
           fitted = map(pca, \(x) augment(x))) |>
    unnest(cols = c(fitted)) |>
    add_column(county = midwest$county) 

out
# A tibble: 437 × 30
# Groups:   state [5]
   state data     pca      pcs      .rownames .fittedPC1 .fittedPC2 .fittedPC3
   <chr> <list>   <list>   <list>   <chr>          <dbl>      <dbl>      <dbl>
 1 IL    <tibble> <prcomp> <tibble> 1              0.403     -0.233    0.00488
 2 IL    <tibble> <prcomp> <tibble> 2              0.413      8.14     3.33   
 3 IL    <tibble> <prcomp> <tibble> 3              0.908      0.326   -0.303  
 4 IL    <tibble> <prcomp> <tibble> 4             -0.344     -2.37    -0.907  
 5 IL    <tibble> <prcomp> <tibble> 5              0.940      1.61     1.06   
 6 IL    <tibble> <prcomp> <tibble> 6              0.482     -1.07    -0.744  
 7 IL    <tibble> <prcomp> <tibble> 7              1.61       1.83    -1.29   
 8 IL    <tibble> <prcomp> <tibble> 8              0.835     -0.428   -0.839  
 9 IL    <tibble> <prcomp> <tibble> 9              1.28       0.408   -1.08   
10 IL    <tibble> <prcomp> <tibble> 10            -3.49      -3.13     7.39   
# ℹ 427 more rows
# ℹ 22 more variables: .fittedPC4 <dbl>, .fittedPC5 <dbl>, .fittedPC6 <dbl>,
#   .fittedPC7 <dbl>, .fittedPC8 <dbl>, .fittedPC9 <dbl>, .fittedPC10 <dbl>,
#   .fittedPC11 <dbl>, .fittedPC12 <dbl>, .fittedPC13 <dbl>, .fittedPC14 <dbl>,
#   .fittedPC15 <dbl>, .fittedPC16 <dbl>, .fittedPC17 <dbl>, .fittedPC18 <dbl>,
#   .fittedPC19 <dbl>, .fittedPC20 <dbl>, .fittedPC21 <dbl>, .fittedPC22 <dbl>,
#   .fittedPC23 <dbl>, .fittedPC24 <dbl>, county <chr>

And there’s more …

Nesting other things

Let’s go back to this stage:

# New model
fit_ols2 <- function(df) {
    lm(lifeExp ~ log(gdpPercap) + log(pop), data = df)
}

out_tidy <- gapminder |>
    group_by(continent, year) |>
    nest() |> 
    mutate(model = map(data, fit_ols2),
           tidied = map(model, tidy)) 

out_tidy
# A tibble: 60 × 5
# Groups:   continent, year [60]
   continent  year data              model  tidied          
   <fct>     <int> <list>            <list> <list>          
 1 Asia       1952 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 2 Asia       1957 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 3 Asia       1962 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 4 Asia       1967 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 5 Asia       1972 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 6 Asia       1977 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 7 Asia       1982 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 8 Asia       1987 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
 9 Asia       1992 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
10 Asia       1997 <tibble [33 × 4]> <lm>   <tibble [3 × 5]>
# ℹ 50 more rows

A function to draw a coef plot

# Plot the output from our model
mod_plot <- function(data, 
                     title){
  data |> 
    filter(term %nin% "(Intercept)") |> 
    ggplot(mapping = aes(x = estimate,
                         xmin = estimate - std.error,
                         xmax = estimate + std.error,
                         y = reorder(term, estimate))) + 
    geom_pointrange() + 
    labs(title = title, 
         y = NULL)
}

Add it using map2() or pmap()

  • When we have two arguments to feed a function we can use map2(). The general case is pmap(), for passing any number of arguments in a list.
out_tidy <- gapminder |> group_by(continent, year) |> nest() |> 
    mutate(title = paste(continent, year),
           model = map(data, fit_ols2),
           tidied = map(model, tidy), 
           ggout = pmap(list(tidied, title), 
                        mod_plot)) 

out_tidy
# A tibble: 60 × 7
# Groups:   continent, year [60]
   continent  year data              title     model  tidied           ggout 
   <fct>     <int> <list>            <chr>     <list> <list>           <list>
 1 Asia       1952 <tibble [33 × 4]> Asia 1952 <lm>   <tibble [3 × 5]> <gg>  
 2 Asia       1957 <tibble [33 × 4]> Asia 1957 <lm>   <tibble [3 × 5]> <gg>  
 3 Asia       1962 <tibble [33 × 4]> Asia 1962 <lm>   <tibble [3 × 5]> <gg>  
 4 Asia       1967 <tibble [33 × 4]> Asia 1967 <lm>   <tibble [3 × 5]> <gg>  
 5 Asia       1972 <tibble [33 × 4]> Asia 1972 <lm>   <tibble [3 × 5]> <gg>  
 6 Asia       1977 <tibble [33 × 4]> Asia 1977 <lm>   <tibble [3 × 5]> <gg>  
 7 Asia       1982 <tibble [33 × 4]> Asia 1982 <lm>   <tibble [3 × 5]> <gg>  
 8 Asia       1987 <tibble [33 × 4]> Asia 1987 <lm>   <tibble [3 × 5]> <gg>  
 9 Asia       1992 <tibble [33 × 4]> Asia 1992 <lm>   <tibble [3 × 5]> <gg>  
10 Asia       1997 <tibble [33 × 4]> Asia 1997 <lm>   <tibble [3 × 5]> <gg>  
# ℹ 50 more rows

Now, every element of ggout is …

A plot!

out_tidy$ggout[[8]]

out_tidy$ggout[[18]]

We don’t just put them in there for fun

  • We can e.g. walk the plots out to disk

We don’t just put them in there for fun

  • We can e.g. walk the plots out to disk
# If a root-level figures directory doesn't exist, create one
ifelse(!dir.exists(here("figures")), dir.create(here("figures")), message("`figures` already exists"))
[1] TRUE
fs::dir_ls(here("figures"))
character(0)

We don’t just put them in there for fun

  • We can e.g. walk the plots out to disk

  • walk() is map() for when you just want a “side-effect” such as printed output. There is also walk2() and pwalk()

pwalk(
  list(
    filename = paste0(out_tidy$title, ".png"),
    plot = out_tidy$ggout,
    path = here("figures"),
    height = 3, width = 4,
    dpi = 300
  ),
  ggsave
)

Peek again in the figures/ folder

fs::dir_ls(here("figures")) |> 
  basename()
 [1] "Africa 1952.png"   "Africa 1957.png"   "Africa 1962.png"  
 [4] "Africa 1967.png"   "Africa 1972.png"   "Africa 1977.png"  
 [7] "Africa 1982.png"   "Africa 1987.png"   "Africa 1992.png"  
[10] "Africa 1997.png"   "Africa 2002.png"   "Africa 2007.png"  
[13] "Americas 1952.png" "Americas 1957.png" "Americas 1962.png"
[16] "Americas 1967.png" "Americas 1972.png" "Americas 1977.png"
[19] "Americas 1982.png" "Americas 1987.png" "Americas 1992.png"
[22] "Americas 1997.png" "Americas 2002.png" "Americas 2007.png"
[25] "Asia 1952.png"     "Asia 1957.png"     "Asia 1962.png"    
[28] "Asia 1967.png"     "Asia 1972.png"     "Asia 1977.png"    
[31] "Asia 1982.png"     "Asia 1987.png"     "Asia 1992.png"    
[34] "Asia 1997.png"     "Asia 2002.png"     "Asia 2007.png"    
[37] "Europe 1952.png"   "Europe 1957.png"   "Europe 1962.png"  
[40] "Europe 1967.png"   "Europe 1972.png"   "Europe 1977.png"  
[43] "Europe 1982.png"   "Europe 1987.png"   "Europe 1992.png"  
[46] "Europe 1997.png"   "Europe 2002.png"   "Europe 2007.png"  
[49] "Oceania 1952.png"  "Oceania 1957.png"  "Oceania 1962.png" 
[52] "Oceania 1967.png"  "Oceania 1972.png"  "Oceania 1977.png" 
[55] "Oceania 1982.png"  "Oceania 1987.png"  "Oceania 1992.png" 
[58] "Oceania 1997.png"  "Oceania 2002.png"  "Oceania 2007.png" 

Clean up

fs::dir_delete(here("figures"))