Sociol 703: Modern Plain Text
Computing

Kieran Healy
Duke University

kieran.healy@duke.edu

About this course

This course is an introduction to modern plain-text methods of data analysis, data
management, and coding. It is required for first-year graduate students in the Soci-
ology department. It introduces a suite or “stack” of computing tools and techniques
that are widely used in the department, the discipline, across the social sciences, and
beyond. We will learn to use these tools and also learn why they exist and why they are
important for producing work that is reliable, reproducible, and open to inspection.

Motivation

Researchers depend on computer software to get their work done. But often, they do
not know enough about how their computers work. This makes their lives more dif-
ficult. T don’t mean it’s a shame not everyone is a software engineer ready and able
to write applications from the ground up. Rather, as researchers working with data

kieran.healy@duke.edu

of various kinds, we just don't make the best use of our computers. Nor are we en-
couraged to reflect on why they work the way they do. Instead we end up fending for
ourselves and picking things up informally. Or, instead of getting on with the task at
hand, course instructors are forced to spend time bringing people up to speed about
where that document went, or what a file is, or why the stupid thing stopped working
just now. In the worst case, we never get a feel for this stuff at all and end up marinat-
ing in an admixture of magical thinking and sour resentment towards the machines
we sit in front of for hours each day.

All of that is bad. This course is meant to help. While the coding and data analysis
tools we have are powerful, they are also kind of a pain in the neck. For the most
part they are made to allow us to know what we did. They can be opened up to have
their history and inner workings examined if needed. This runs against the grain of
the devices we use most often—our phones—which do not work in that way at all.
As a rule, apps on your phone hide their implementation details from you and do
not want you to worry too much about where things are stored or how things are
accomplished or what happens if you need to do the same thing again later. They do
that for very good reasons. But it does mean that even if you use a powerful computer
constantly, as we almost all do now, it does not give you much of a grip on how more
technical computing works. To the contrary, it makes it look strange and annoying
and deliberately confusing.

The fragmented, messy, and multifacted tasks associated with scholarly research
make heavy demands on software. Most of them have to do with the need for control
over what you are doing, and especially the importance of having a record of what you
did that you can revisit and reproduce if needed. They also need to allow us to track
down and diagnose errors. Because our research work is fragmented and messy, this
can often be a tricky process to think clearly about and work through in a systematic
way.

To help address these challenges, modern computing platforms provide us with a
suite of powerful, modular, specialized tools and methods. The bad news is that they
are not magic; they cannot do our thinking for us. The good news is that they are
by now very old and very stable. Most of them are developed in the open. Many are
supported by helpful communities. Almost all are available for free. Nearly with-
out exception, they tend to work through the medium of explicit instructions written
out in plain text. In other words they work by having you write some code, in the
broadest sense. People who do research involving structured data of any kind should
become familiar with these tools. Lack of familiarly with the basics encourages bad
habits and unhealthy attitudes among the informed and uninformed alike, ranging
from misplaced impatience to creeping despair.

Reading

Required reading from books and articles will be provided on the course website Can-
vas or (in most cases) will be freely available online. Useful texts to acquire in hardcopy
or to bookmark include:

o Hadley Wickham, Garrett Grolemund, and Mine Cetinkaya-Rundel, R for
Data Science: Import, Tidy, Transform, Visualize, and Model Data, Second.
(Sebastopol, CA: O’Reilly Media, 2023), https://r4ds.hadley.nz.

o Jeroen Janssens, Data Science at the Command Line, Second. (O’Reilly Media,
2021), https://jeroenjanssens.com/dsatcl/.

o Chester Ismay and Albert Y. Kim, Statistical Inference via Data Science (CRC
Press, 2019), https://moderndive.com.

« Scott Chacon and Ben Straub, Pro Git, Second. (Apress, 2014), https://git-scm.
com/book/en/v2.

« Kieran Healy, Data Visualization: A Practical Introduction (Princeton: Princeton
University Press, 2019), http://socviz.co/.

o Jeftrey E F Friedl, Mastering Regular Expressions, 3rd ed. (Sebastopol, CA:
O’Reilly Media, 2006).

o Will Landau, “The {Targets} R Package User Manual,” 2022, https://books.rope
nsci.org/targets/.

« Hadley Wickham and Jennifer Bryan, R Packages: Organize, Test, Document, and
Share Your Code, Second. (O'Reilly Media, 2023), https://r-pkgs.org.

o Garrett Christensen, Jeremy Freese, and Edward Miguel, Transparent and Repro-
ducible Social Science Research (Berkeley: University of California Press, 2019).

Software

We will do all most of our work class using Unix-style command line tools, R, and
RStudio. R is a freely-available programming language that is designed for statistical
computing and widely used across the natural and social sciences, as well as in the
world of “data science” generally. RStudio is an integrated development environment,
or IDE, for R, a kind of control center from which you can manage the engine-room
of Ritself. It is also freely available.

Course website

The course website is at https://mptc.io. Each week, slides, readings, and other class
material will be posted there along with additional examples and the problem set due
the following week.

https://mptc.io
https://r4ds.hadley.nz
https://jeroenjanssens.com/dsatcl/
https://moderndive.com
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
http://socviz.co/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/
https://r-pkgs.org
https://cran.r-project.org/
https://www.rstudio.com/
https://cran.r-project.org/
https://www.rstudio.com/
https://mptc.io

Weekly Schedule

Week Topic

Week 1 Overview: Doing data analysis properly

Week 2 R, RStudio, and Quarto

Week 3 Your Computer: The file system; the terminal; the Unix way of thinking
Week 4 The Shell: Finding, listing, and inspecting things

Week 5 Editing Text: Text editors; slicing and dicing; regular expressions

Week 6 Version Control: Git and GitHub; knowing what you did
Week 7 Understanding the Network: Servers, websites, and APIs
Week 8 How R thinks

Week 9 Getting your data in and out of R

Week 10 Tabulation, grouping, summaries

Week 11 Graphs and the grammar of graphics
Week 12 Programming: writing, documenting, and testing your code
Week 13 Reproducibility and build systems: make, targets, renv

Course policies

o Attendance is required, and important. I am a reasonable person; if you need to
be absent please let me know in advance insofar as that is possible.

« Do the assigned readings in advance of class.

« Submit problem sets, or other assignments, on time.

Required work and grading

Weekly Class Participation (30% of final grade) and Problem Sets (50% of final grade)
will let you reflect on the reading and practice your skills. Problem sets are due by end
of day the Monday after they are assigned. A Final Project (20% of final grade) will
allow you to put what you've learned to use.

Duke community standard

Like all classes at the university, this course is conducted under the Duke Community
Standard. Duke University is a community dedicated to scholarship, leadership, and
service and to the principles of honesty, fairness, respect, and accountability. Citizens
of this community commit to reflect upon and uphold these principles in all academic

and nonacademic endeavors, and to protect and promote a culture of integrity. To
uphold the Duke Community Standard you will not lie, cheat, or steal in academic
endeavors; you will conduct yourself honorably in all your endeavors; and you will
act if the Standard is compromised.

